Coast Welcome Figure at Isthmus Park Pre-submission Narrative

A. Project Specifics

The Olympia Parks, Arts and Recreation Department (OPARD) is planning to install a public art piece, known as the *Coast Welcome Figure*, and associated landscaping at the Isthmus Park located at 531 4th Ave W. The project will be constructed on the NW corner of the park near the Olympia Yashiro Friendship Bridge (4th Avenue). This is a joint project that has been requested by the City Council and Squaxin Island Tribal Council, and is a key connection between Percival Landing and what will become the Deschutes Estuary. The attached concept design (Exhibit A) is a draft proposal with the flexibility to be revised as appropriate to avoid a Shoreline Substantial Development permit or trigger the need for any stormwater permitting. We look forward to working with the city to find a path that delivers a meaningful space while minimizing the permit requirements.

The project is to be installed in an area that is currently majority asphalt parking. See Exhibit A for a site plan for the proposed design and Exhibit C for the existing conditions. The installation and design features of our proposal include:

- Sawcutting and removal of existing asphalt paving and removal of gravel subbase.
- Decompaction and placement of planting soil. We will be building up and planting soil will be placed on top of existing soil that is exposed with the removal of asphalt and subbase. There will be no excavation beyond this.
- Potential installation of irrigation. We will also consider installation of plantings in the fall to optimize plant establishment without a permanent irrigation system.
- Installation of a carved Coast Welcome Figure sculpture by artist Andrea Wilbur-Sigo.
- Installation of a concrete plinth and foundation that support the sculpture (see Exhibit B for structural design from a similar sculpture).
- Planting of native perennials, shrubs, and trees.
- Placement of large woody debris on existing soils (no excavation).
- Installation of crushed oyster shells or crushed rock surfacing.
- Installation of sand-set pavers to provide an accessible route to the sculpture.
- Placement of wood log rounds to serve as informal seating.
- Re-striping of adjacent parking stalls and installation of wheel stops on existing asphalt pavement.

We have some specific permitting questions and items for coordination or confirmation:

- There is a large stormwater vault to the north. What access is required for maintaining the vault? Knowing this can help us identify ways to adjust our design to allow for this access.
- The design calls for no excavation other than what is required to place the sculpture foundation (within the existing pavement limits). We are building up soil and placing pavers on top of the existing subbase. Will this allow us to stay below the threshold for obtaining a grading permit?

- Does the foundation for the Welcome Figure or other project elements trigger a shoreline substantial development permit? Knowing what elements specifically trigger this requirement will help us identify ways to adjust our design to minimize impacts and permitting.
- We are showing new plantings around the existing stormwater vault, which would require removal of the turf that is there. Would removing turf and replacing with native plantings and doing the work by hand help us not trigger a grading permit? Due to the planting around the vault falling outside of the existing pavement area and within shoreline jurisdiction, would that work trigger a critical areas permit or review?
- We understand that structures are limited in the shoreline jurisdiction. As designed, we see that the sculpture and its base/foundation are a structure. Are there other elements that would be considered structures?

B. Site conditions-existing

In 2013, OPARD purchased the former County Health and Thurston County Housing Authority properties totaling 2.3 acres. The derelict buildings were demolished in 2015. In 2018, interim improvements were made to the park. The park is now home to Oly on Ice, Olympia's seasonal ice-skating rink from mid November through mid January. The park also hosts a seasonal pump track for riding bikes, scooters and skateboards spring through fall.

The portion of the site that is being proposed to house this new landscape and Coast Welcome Figure sculpture is now paved in asphalt bounded by three wheel stops at the western edge. See Exhibit C for existing conditions.

C. Proposed vehicle access and parking

The existing vehicle access to the park is from 4th Avenue and 5th Avenue and will not be changed. We are proposing 2-3 standard parking stalls and one accessible stall for onsite dedicated parking for park use.

D. Proposed utilities to serve project

If possible, in a minimal permitting scenario, we would like to see if it is feasible to add irrigation, however the design is flexible and we can move forward without that. The site has storm, electrical, water, and sewer utilities adjacent to the site. See Exhibit C derived from city GIS.

E. Any other relevant project information

The proposed improvements fall beneath the stormwater management thresholds of 2,000 square feet of new plus replaced hard surface area and 7,000 square feet of land disturbing activities. Per section I-3.3 of the City's 2022 Drainage Design and Erosion Control Manual, only Core Requirement #2: Construction Stormwater Pollution Prevention Plan (C-SWPPP) applies to this project. A C-SWPPP will not be prepared, but the project team will consider all of the C-SWPPP Elements and propose controls for the elements that pertain to the project site.

Attachments:

- 1. Vicinity Map
- 2. Exhibit A: Concept Design
- 3. Exhibit B: Example structural base & foundation design
- 4. Exhibit C: Existing site conditions plan

EXHIBIT A

Where the Deschutes Estuary Begins

Welcome Figure at the Yashiro Friendship Bridge, Olympia

Welcome Figure | Andrea Wilbur-Sigo Landscape | Olympia Parks, Arts, and Recreation

 Approximate Edge of Existing Paving
 Existing Utility Vault
 Western Red Cedar
 Coastal Grasses
 Forest Understory Planting
 Shell, Sand and Gravel Mix
 Large Driftwood
 Concrete Plank Style Paving (ADA Compliant)
Concrete Plank Style Paving (ADA Compliant) Welcome Figure
Concrete Plank Style Paving (ADA Compliant) Welcome Figure Cedar Log Seats
Concrete Plank Style Paving (ADA Compliant) Welcome Figure Cedar Log Seats Red Alder Grove
Concrete Plank Style Paving (ADA Compliant) Welcome Figure Cedar Log Seats Red Alder Grove Restriped Parking Stalls w/ Wheel Stops
Concrete Plank Style Paving (ADA Compliant) Welcome Figure Cedar Log Seats Red Alder Grove Restriped Parking Stalls w/ Wheel Stops Existing Utility Vault
Concrete Plank Style Paving (ADA Compliant) Welcome Figure Cedar Log Seats Red Alder Grove Restriped Parking Stalls w/ Wheel Stops Existing Utility Vault

EXHIBIT B

ODD lot

Project: Martin Residence Figure

Client: Andrea Sigo

ODD Lot Design LLC 4110 Dayton Ave N Seattle, WA 98103 United States of America tel: (206) 300-7261

Sculpture Structural design 10/4/2023

	Job Title:	Martin Residence	sculpture	Job #	73
ODD lot	Reference:	General			
	Made By:	СВ	Date: 10/4/2023	Sheet #	1/15
	•				

Welcome figures - general info

These calculations document the structural design for the proposed welcome figure sculptures by Andrea Sigo located in Olympia WA

518 Howard Ave NE, Olympia 98506

The figure is 12' tall and 32" dia and estimated to weigh 2000 lb

The sculpture rests on a concrete plinth 36" dia that extends up to a maximum of 3'-0" above grade that in turn rests on a square foundation 18" below grade.

Assume that the plith contributes to the seismic demand 3' dia x 3.5' tall = 24.75 cf = 3.7 k

The sculpture will connect to the base via a frame with epoxy or embeded anchors.

ODD lot	Job Title:	Martin Residence	sculpture	Job #	73
	Reference:	General			
	Made By:	СВ	Date: 10/4/2023	Sheet #	2/15

Welcome Figure sculptures - general design information

Design of the sculpture structure and its anchorage is per the 2018 Washington State Building Code & ASCE 7-16 by reference

Structure is subject to dead loads arising from its own self weight and seismic loads as well as wind loads and live loads

Dead Loads

Dead load consists of the self weight of the wood sculpture and any internal armature or hardware

Live Loads

Live loads consist of a 200 lb lateral load applied at 4 ft above the ground and the weight of a person climbing the sculpture. By inspection, this load does not control the structural design.

Seismic Loads

For the purposes of assessing seismic loads, the sculpture is considered a non-building structure per chapter 15 of ASCE 7.

Wind Loads

For the purposes of assessing wind loads, the sculpture is considered "Other Structures" per chapter 29 of ASCE 7.

	Job Title:	Martin Residence	sculpture	Job #	73
ODD lot	Reference:	General			
	Made By:	СВ	Date: 10/4/2023	Sheet #	3/15

518 Howard Ave NE Olympia, Washington

Address:

98506

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-16	Latitude:	47.066054
Risk Category	/:	Longitude	-122.896766
Soil Class:	D - Default (see Section 11.4.3)	Elevation:	15.78348409431032 ft (NAVD 88)

Wind

Results:

Wind Speed	97 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	77 Vmph
100-year MRI	82 Vmph

Data Source:ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2Date Accessed:Sat Jul 29 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

	Job Title:	Martin Residence	e sculpt	ure	Job #	73
DD lot	Reference	General				
	Made By:	СВ	Date:	10/4/2023	Sheet #	4/15
ASCE						
AMERICAN SOCIETY OF CIVIL ENGINEERS						
Site Soil Class: Results:		D - Default (see See	ction 11.	4.3)		
Results.						
S _s :		1.421	S_{D1}	: N	/A	
S1 :	().525	T∟ :	10	6	
F _a :		1.2	PGA	: 0.	61	
F _v :	1	N/A	PGA	м: О.	732	
S _{MS} :		1.705	F_{PGA}	: 1.	2	
S _{M1} :	1	N/A	I _e :	1		
S _{DS} :		1.137	C _v :	1.	384	
Ground motion haza	rd analysis ma	ay be required. See A	ASCE/S	EI 7-16 Section 11	.4.8.	
Data Accessed:		Sat Jul 29 2023				
Date Source:		USGS Seismic Des	<mark>ign Map</mark>	<u>s</u>		

	Job Title:	Martin Residence	sculpture	Job #	73
ODD lot	Reference:	Seismic			
	Made By:	СВ	Date: 10/4/2023	Sheet #	5/15

The sculpture is considered as a non-building structure per the requirements of ASCE 7-16, chapter 15. Seismic design is carried out using an equivalent lateral force analysis per chapter 12.8.

Equivalent lateral force analysis SDC = DRisk Category = II, Ie = 1.0 Design as an "amusement structure or monument" per ASCE 7 table 15.4-2. R = 2, Cd = 2, Omega = 2

given the height of the structure, we can assume that its fundamental period is <0.55 sec and therefore the design period Sa = Sds

Min Cs = 0.044Sds le = 0.039g (15.4-1)

Cs = Sds/(R/I) = 1.137/2 = 0.57g

W fig = 2kW base = 3.7k

V fig = 0.57 x 2k = 1.14k V base = 1.14k + 0.57 x 3.7k = 3.25 k

Mot (bot of fig) = 1.14 k x 8' = 9.12 k-ftMot (base) = 1.14 k x 11.5' + 2.1 k x 2.3' = 18 k-ftMot (ftg) = 1.14 k x 12.5' + 2.1 k x 3.3' = 21.2 k-ft

rho can be taken as 1.0 (ASCE 7 15.6)

Eh = 1.0 x V

Ev = 0.2 x 1.137 x D = 0.23 D

 $C_{s} = 0.044 S_{DS} I_{e}$ (15.4-1) $C_{s} = \frac{S_{DS}}{\langle R \rangle}$

12.8.1 Seismic Base Shear. The seismic base shear, V, in a given direction shall be determined in accordance with the following equation:

$$V = C_s W \tag{12.8-1}$$

where

 C_s = the seismic response coefficient determined in accordance with Section 12.8.1.1, and

W = the effective seismic weight per Section 12.7.2.

12.4.2.2 Vertical Seismic Load Effect. The vertical seismic load effect, E_v , shall be determined in accordance with Eq. (12.4-4a) as follows:

$$E_v = 0.2S_{DS}D$$
 (12.4-4a)

	Job Title:	Martin Residence	sculpture	Job #	73
ODD lot	Reference:	General			
	Made By:	СВ	Date: 10/4/2023	Sheet #	6/15

Wind Basis of Design

For wind load, consider as a hexagonal "chimney" structure

RC II structure. Exposure D (coastal) v = 97Kzt = 1.0 Kd = 0.95 (table 26.6-1) Kz = 1.03 (table 29.3.1 for max ht = 15 ft) G = 0.85 (non flexible structure) $q_z = 0.00256 K_z K_z K_d V^2$ (lb/ft²) (29.3-1)

qz = 23.6 psf

29.5 DESIGN WIND LOADS—OTHER STRUCTURES

The design wind force for other structures (chimneys, tanks, rooftop equipment for $h > 60^\circ$, and similar structures; open signs; lattice frameworks; and trussed towers) shall be determined by the following equation:

 $F = q_z G C_f A_f \text{ (lb) (N)}$ (29.5-1)

Force coeffecient Cf = 1.2 per table 29.5-1 for a hexagonal chimney with h/D = 7 (conservative as actual $h/D \sim 4$)

Design pressure = $23.6 \text{ psf } \times 0.85 \times 1.2 = 24 \text{ psf}$

Projected width of sculpture taken as 2.7 ft so

total wind load (V base) = $2.7' \times 15' \times 24 \text{ psf} = 0.97 \text{ k}$ wind load at base of figure (V fig) = 0.78 k

Mot (at base of figure) = $0.78k \times 6' = 4.7 \text{ k-ft}$ Mot (at fdn base) = $0.97k \times 8.5' = 8.25 \text{ k-ft}$

This is less than the seismic load so it can be assumed that seismic governs design and effects of wind loading do not need to be checked explicitly.

	Job Title:	Martin Residen	ce sculptu	e	Job #	73			
ODD lot	Reference	Reference: General							
	Made By:	СВ	Date:	10/4/2023	Sheet #	7/15			
Sigo footing overturnir	ng calculati	ions							
Footing D		1							
Footing L		5	Mxx direc	tion					
Footing W		5	Myy direc	tion					
Wt ftg		3,750.0							
Wt above		5,710.0	lb						
D (total)		9,460.0	lb						
D Mxx		750.0	lb-ft						
D Myy		750.0	lb-ft						
Wind ASD (0.6W) Shea	rx	582	lb						
Wind ASD (0.6W) Shea	r y	582	lb						
Wind ASD (0.6W) Mxx		4,950	lb-ft						
Wind ASD (0.6W) Myy		4,950	lb-ft						
Seismic ASD (0.7E) She	ar x	2,275	lb						
Seismic ASD (0.7E) She	ar y	2,275	lb						
Seismic ASD (0.7E) Mxx	(14,840	lb-ft						
Seismic ASD (0.7E) Myy	/	14,800	lb-ft						
Ground Coeffecient of	friction	0.300							

	Job Title:	Martin	Residenc	ce sculptu	ire	Job #	73		
ODD lot	Reference: General								
	Made By:	СВ		Date:	10/4/2023	Sheet #	8/15		
			WIND CA	LCULATIO	NS	-			
itability					Max Pressure o	alculations			
0.	6D	5,676.0	lb		1.0 D		9,460.0	lb	
0.6W she	ear	582	lb		Mot xx		5,700	lb-ft	
0.6W Mot	xx	5,400	lb-ft		Mot yy		5,700	lb-ft	
0.6W Mot	уу	5,400	lb-ft						
					P/A		378	psf	
Overturning Mxx					e xx		0.60	ft	
Overturning at toe (Mot	xx)	5,400	lb-ft		OT pressure q	XX	652	psf	
Resisting at toe (N	∕lr)	14,190	lb-ft		pressure block	length	5.00	ft	
Overturning D	0/C	38%			- / -				
					P/A		378	pst G	
Overturning Myy		F 400	IL &		е уу		0.60	ft mef	
Overturning at toe (Mot	(y) (r)	5,400	ID-IT		or pressure q	yy Ionath	652 E 00	pst +	
		14,190	ID-IL		pressure block	length	5.00	it.	
Overturning L	ηc	30/0							
Sliding									
Sliding friction dema	nd	582	lb						
Sliding friction capac	tity	1702.8	lb						
Sliding D)/C	34%							
			SEISMIC C	ALCULATIO	ONS				
ability					Max Pressure of	alculations			
0.	6D	5,676.0	lb		1.0 D		9,460.0	lb	
0.7E shear reduced 2	5%	1,706	lb		Mot xx reduced	d 25%	11,880	lb-ft	
Not xx reduced 25%		11,580	lb-ft		Mot yy reduced	d 25%	11,850	lb-ft	
Not yy reduced 25%		11,550	lb-ft				(\sim	
					P/A		378	psf	
Overturning Mxx					e xx		1.26	ft	
Overturning at toe (Mot	xx)	11,580	lb-ft		OT pressure q	xx	1014	psf	
Resisting at toe (N	∕lr)	14,190	lb-ft		pressure block	length	3.73	ft	
Overturning D	0/C	82%			- / -				
					P/A		378	psf G	
Overturning Myy	1	44 550	IL D		е уу		1,25	Yr)	
Overturning at toe (Mot	γγ) 4)	11,550	ID-TT		OT pressure d	yy Ion att		pst X	
Resisting at toe (N	/ir) VC	14,190	JT-QI		pressure block	lengtn	3.14		
Overturning L	ηc	0170					/		
liding						/	/		
Sliding friction dema	nd	1 706	lb			/			
	sity.	1702.8	.~ Ib		/	(
Sliding friction capac									

low

overturning demands

	Job Title:	Martin Residence	Job #	73		
ODD lot	Reference: Base Connection					
	Made By:	СВ	Date:	10/4/2023	Sheet #	9/15

Sculpture structural system - Base connection - upper to lower steel plate

(2) Galvanized A307 bolts are located in each corner of the frame Bolt span = 14.625"

Moment due to seismic at base = $9.12 \text{ kip-ft} = 109.4 \text{ kip-in} / 14.625" = 7.5 \text{ kip tension} / compression}$

7.5 kip / 4 bolts = 1.9 kip / bolt (note that global tension/compression is carried by bolt shear)

Dead load at base = (2 kip x (1.2+0.23)) / 8 bolts = 0.36 k / bolt

Total bolt force = 2.3 kip - single shear capacity of 1/2" A307 bolt is 3.98 kip - ok

Welded connections between the frames and top / bottom plate are ok by inspection

Sculpture structural system - Base connection anchor bolts

Anchor bolt span = 14.625" effective dead load (assuming light estimate) = 0.9D = 1800 lb

Anchor design performed in Hilti Profis (See profis output on page 11)

Use (8) CIP 3/4" anchors

ODD lot	Job Title:	Martin Residence	sculptu	Job #	73	
	Reference: Base Connection					
	Made By:	СВ	Date:	10/4/2023	Sheet #	10/15

Sculpture structural system - Base connection - steel plate to sculpture

sculpture base = 32" dia Maintaining 3" edge distance, the screw group is centered around a 19.5" square frame

Based on the square screw pattern, assume that shear is carried by the side screws and flexure is carried by the top and bottom lines of screws.

Shear - 1.14 k x 0.7 x omega = 2 = 1.6 k Carried by 16 screws = 100 lb per screw allowable shear load = 235 lb / screw x 1.6 duration x 0.67 end grain = 252 lb > 100 ok

Flexure

Moment due to seismic at base of figure = 9.12 k-ft = 109.4 k-inConvert to ASD (0.7) E = 76.6 k-in factor up by omega = 2 = 153.2 k-in

153.2 k-in / 19 in = 8 k per screw line 8k / 14 screws = 571 lb per screw

Simpson SDWH screw has 160 lb/in withdrawal capacity in WRC (0.36 G) Factored capacity = 1.6 duration x 160 lb/in x 2.95" x 0.75 EG factor = 566 lb per screw

566 lb per screw is slightly (1%) less than 571 lb required, but likely ok as this calculation assumes fully elastic seismic behavior with R=2 and Omega = 2. Allowing for limited ductility, the force would be less than 571 lb. Also, the code does not require omega to be applied to this connection,

Job Title: Martin Resid	73		
Reference: Anchor Desi			
Made By: CB	Date: 10/4/2023	Sheet #	11/15
3.0.88			
ase Anchors - Oct 3, 2023	Page: Specifier: E-Mail: Date:		1 10/4/2023
		Concern Franciskinski	
Heavy Hex Head ASTM F 155	64 GR. 36 3/4		
2.8): $d_{\text{plate}} = 0.100 \text{ in., } t_{\text{plate}} = 0.100 \text{ in}$	n.		
$h_{ef} = 12.000 \text{ in.}, h_{ef 17,4,2,8} = 12.100 \text{ in.}$	033 in.		
ASTM F 1554			
Hilti Technical Data			
- -			
Design Method ACI 318-14 / C	IP		
without clamping (anchor); rest Hilti Grout: CB-G EG, epoxy, f _c	traint level (anchor plate): 2.00; e _b = 1 _{,Grout} = 14,939 psi	.181 in.; t = 0.500 in.	
$I_x \times I_y \times t = 20.000$ in. x 20.000	in. x 0.500 in.; (Recommended plate t	hickness: not calcula	led)
no profile			
cracked concrete, 3000, f_c' = 3	,000 psi; h = 48.000 in.		
tension: condition A, shear: co	ndition A;		
edge reinforcement: none or < Tension load: yes (17.2.3.4.3 (Shear load: yes (17.2.3.5.3 (c)	No. 4 bar d))		
eed on a rigid anchor plate assumption)		
n.lb]			
	Job Title: Martin Resid Reference: Anchor Desi Made By: CB 3.0.88 Beavy Hex Head ASTM F 158 not available 2.8): $d_{plate} = 0.100$ in., $t_{plate} = 0.100$ in $h_{ef} = 12.000$ in., $h_{ef,17,4.2.8} = 12.1$ ASTM F 1554 Hilti Technical Data - - Design Method ACI 318-14 / C without clamping (anchor); resil Hilti Grout: CB-G EG, epoxy, f_c $I_x \times I_y \times t = 20.000$ in. x 20.000 in no profile cracked concrete, 3000, f_c ' = 3 tension: condition A, shear: con- edge reinforcement: none or < Tension load: yes (17.2.3.4.3 (c) Shear load: yes (17.2.3.5.3 (c) and the state of the s	Job Title: Martin Residence sculpture Reference: Anchor Design Made By: CB Date: 10/4/2023 3.0.88 Heavy Hex Head ASTM F 1554 GR. 36 3/4 not available 2.8): $d_{plate} = 0.100$ in., $t_{plate} = 0.100$ in. $h_{ef} = 12.000$ in., $t_{plate} = 0.100$ in. $h_{ef} = 12.000$ in., $h_{ef,17,42,8} = 12.033$ in. ASTM F 1554 Hitti Technical Data - - Design Method ACI 318-14 / CIP without clamping (anchor); restraint level (anchor plate): 2.00; $e_{b} = 1$ Hitti Grout: CB-G EG, epoxy, $f_{c,Grout} = 14,939$ psi $l_{x} \times l_{y} \times t = 20.000$ in. x 0.500 in.; (Recommended plate the no profile cracked concrete, 3000, $f_{c} = 3,000$ psi; h = 48.000 in. tension: condition A, shear: condition A; edge reinforcement: none or < No. 4 bar Tension load: yes (17.2.3.5.3 (c)) ed on a rigid anchor plate assumption. Libj	Job Title: Martin Residence sculpture Job # Reference: Anchor Design Made By: CB Date: 10/4/2023 Sheet # 3.0.88 Specifier: Especifier: Especifier: E-Mail: Base Anchors - Oct 3, 2023 Date: Sheet # Specifier: Base Anchors - Oct 3, 2023 Date: Specifier: E-Mail: Date: Date: Date: Specifier: Sympositive On 100 in. hginte = 0.100 in. hginte = 0.100 in. hginte = 0.100 in. Aginte = 0.100 in., hgintraze = 12.033 in. ASTM F 1554 Hitti Technical Data -1- Design Method ACI 318-14 / CIP without clamping (anchor); restraint level (anchor plate): 2.00; e_p = 1.181 in.; t = 0.500 in. Hitti Grout: CB-G EG, epoxy, f_count = 14,939 psi I, x I, x I = 20.000 in. x 0.000 in. x 0.500 in.; (Recommended plate thickness: not calculat no profile cracked concrete, 3000, f_c = 3,000 psi; h = 48.000 in. tension cadi yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.4.3 (d)) <

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

		Job Title:	Martin Resid	ence sculpti	ure		Job #	73	
ODD lot Reference: Anchor Design									
		Made By:	СВ	Date:	10/4/202	3	Sheet #	12/15	
1.1 Design resul	Its								
Case	Description			Forces [lb] / Mo	ments [in.lb]		Seismio	c Max.	Util. Anchor [%]
1	Combinatio	n 1	I	N = -1,800; V _x = 2 M _x = 0; M _y = 218	2,280; V _y = 0; ,880; M _z = 0;		yes		84
2 Load case	e/Resulting a	anchor force	es			_ ⁶		▲ y ⊖ 7	08
Tension force: (+	Tension, -Compr	ession)							
Anchor	Tension force	, Shear force	Shear force x	Shear force	y				
1	3,608	285	285	0					
2	1,683	285	285	0		04			× _5
3	0	285	285	0		Ten	sion		Compressior
4	3,608	285	285	0					
5	0	285	285	0					
6	3,608	285	285	0					
7	1,683	285	285	0		∩1		_ 2	_3
8	0	285	285	0		\cup	·	\bigcirc	\smile
max. concrete co max. concrete co resulting tension resulting compres	ompressive strain: ompressive stress force in (x/y)=(-5. ssion force in (x/y	: 530/-0.000): r)=(8.779/-0.000):	0.10 [‰] 437 [psi] 14,192 [lb] 15,992 [lb]		L				
Anchor forces ar	re calculated base	ed on the assump	tion of a rigid ancl	hor plate.					
3 Tension lo	oad								
			Load N _{ua} [lb]	Capaci	ty ΦN _n [lb]	Utilizatio	on $β_N = N_{ua}/Φ$	N _n	Status
Steel Strength*			3,608	1	4,529		25		OK
Pullout Strength	*		3,608		11,479		32		ОК

17,468

N/A

82

N/A

ΟК

N/A

Concrete Side-Face Blowout, direction **	N/A	

14,192

* highest loaded anchor **anchor group (anchors in tension)

Concrete Breakout Failure**

		Job Title: Ma	artin Reside	nce sculptur	e	Job #	73
ODD lot		Reference: Ar	chor Desigr	l			
		Made By: Cl	3	Date: 1	0/4/2023	Sheet #	13/15
3.1 Steel Strength							
$\begin{array}{ll} N_{sa} & = A_{se,N} \ f_{uta} \\ \phi \ N_{sa} \geq N_{ua} \end{array}$	ACI 318-14 ACI 318-14	Eq. (17.4.1.2) Table 17.3.1.1					
Variables							
A _{se,N} [in. ²]	f _{uta} [psi] 58 000						
Calculations	00,000						
N _{sa} [lb]							
19,372							
N [lb]	¢ steel	φ Ν [lb]	N [lb]				
19,372	0.750	14,529	3,608				
3.2 Pullout Strength							
$N_{pN} = \psi_{c,p} N_p$	ACI 318-14	Eq. (17.4.3.1)					
$N_p = 8 A_{brg} \dot{f_c}$	ACI 318-14	Eq. (17.4.3.4) Table 17 3 1 1					
Ψ '™pN ≃ '™ua							
Variables	Δ [in ²]	λ	f [nsi]				
1.000	0.91	1.000	3,000				
Calculations							
N _p [lb]							
Results							
N _{pn} [lb]	ф _{concrete}	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ N _{pn} [lb]	N _{ua} [lb]		
21,864	0.700	0.750	1.000	11,479	3,608		
3.3 Concrete Breakout	Failure						-
$N_{cbg} = \left(\frac{A_{Nc}}{A_{mc}}\right) \Psi_{ec,N}$	ψ _{ed,N} ψ _{c,N} ψ _c	_{p,N} N _b	ACI 318-14 Eq.	(17.4.2.1b)			
$\phi \ N_{cbg} \geq N_{ua}$	Section 17.4	1 Fig D 17 4 0 1/b)	ACI 318-14 Tab	le 17.3.1.1			
$A_{Nc0} = 9 h_{ef}^2$	36010117.4.2	, FIG. K 17.4.2.1(D)	ACI 318-14 Eq.	(17.4.2.1c)			
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right)$	_≤ 1.0		ACI 318-14 Eq.	(17.4.2.4)			
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,1}}{1.5}\right)$	$\left(\frac{\min}{h_{ef}}\right) \le 1.0$		ACI 318-14 Eq.	(17.4.2.5b)			
$\Psi_{cp,N} = MAX \left(\frac{C_{a,min}}{C_{ac}}, \frac{1}{2} \right)$	$\left(\frac{.5h_{ef}}{c_{ac}}\right) \le 1.0$		ACI 318-14 Eq.	(17.4.2.7b)			
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$			ACI 318-14 Eq.	(17.4.2.2a)			
Variables							
h _{ef} [in.] 9.667	e _{c1,N} [in.] 1.180	e _{c2,N} [in.] 0.000	c _{a,min} [in.] 7.250	Ψ _{c,N} 1.000			
		2	é ma				
C _{ac} [in.] 	24	1.000	3,000				
Calculations							
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1},N}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\Psi_{cp,N}$	N _b [lb]	
841.00	841.00	0.925	1.000	0.850	1.000	39,508	
Results	φ	φ	ф	φN. [[b]	N [lb]		
31,054	0.750	0.750	1.000	17,468	14,192		

DDD lot 4 Shear load Steel Strength*	Re Ma	ference: Anchor de By: CB	Design			•						
4 Shear load Steel Strength*	Ма	de By: CB										
4 Shear load Steel Strength*			D	ate:	10/4/2023	Sheet #	14/15					
Steel Strength*												
Steel Strength*		Load V,	յ _а [lb]	Сара	city �V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua}$	/Փ V _n Status					
		285)		6,044	5	OK					
Steel failure (with lever	arm)*	28	5		977	30	OK					
Pryout Strength**		2,28	30		78,222	3	OK					
Concrete edge failure ir	ı direction x+*	* 2,28	30		8,661	27	OK					
* highest loaded anchor	**anchor g	roup (relevant anchors	.)									
4.1 Steel Strength												
$V_{sa} = 0.6 A_{se,V} f_{uta}$ $\phi V_{steel} \ge V_{ua}$	ACI 318 ACI 318	3-14 Eq. (17.5.1.2b) 3-14 Table 17.3.1.1										
Variables												
A _{se.V} [in. ²]	f _{uta} [psi]											
0.33	58,000											
Calculations												
V _{sa} [lb]												
11,623												
Results												
V _{sa} [lb]	φ _{steel}	ϕ_{eb}	∮ V _{saled} [lb]		V _a [lb]							
11,623	0.650	0.800	6,044		285	_						
.2 Steel failure (with let $v_s^M = \frac{\alpha_M \cdot M_s}{L_b}$ $M_s = M_s^0 \left(1 - \frac{1}{2}\right)$ $M_s^0 = (1.2) (S)$	⊧ver arm) Mua ∮ N _{sa}) (f _{u.min})	bending equation for a resultant flexural resis characteristic flexural	stand-off stance of anchor resistance of anc	chor								
$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$		reduction for tensile for	prce acting simult	aneous	ly with a shear	force on the anchor						
S = $\frac{\pi(d)^3}{32}$		elastic section modulu	us of anchor bolt a	at conc	rete surface							
$L_{b} = z + (n)(d_{c})$))	internal lever arm adju	usted for spalling	of the s	surface concrete	9						
$\phi V_s^M \ge V_{ua}$		ACI 318-14 Table 17.	3.1.1									
Variables												
Vdilaules	f [poi]	N [lb]	<u>≜</u> № [[Ь]		- fin 1	2	d lin 1					
2 00	T _{u,min} [psij 58 000	<u> </u>	ψ IN _{sa} [ID] 14 529		z [in.j 1 431	0.500	<u> </u>					
2-1	00,000	0,000	1,0_0		1101	0.000	0.100					
Calculations	- NI X											
M ⁰ [in.lb]	$\left(1 - \frac{N_{ua}}{\phi N_{ua}}\right)$	M [in [b]	L. fin 1									
1,806	0.752	1,357	1.806									
Reculte												
	φ	άν ^М пьт)/ [[]]]									
v _s [ib]	Ψ steel	φν _s [b]	V _{ua} [ID]									

		Job Title: Martin Residence sculpture			Job #	73	
ODD lot		Reference:	Anchor Des	sign		·	
		Made By:	СВ	Date:	10/4/2023	Sheet #	15/15
4.3 Pryout Strength		<u></u>					
$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi \right]$ $\phi V_{cpg} \ge V_{ua}$ $A_{Nc} \text{ see ACI 318-14, S}$ $A_{Nc0} = 9 h_{ef}^2$	_{ec,N} Ψ _{ed,N} Ψ _c Section 17.4.:	_{c,N} ψ _{cp,N} N _b] 2.1, Fig. R 17.4.2.1	ACI 318- ACI 318- (b) ACI 318-	-14 Eq. (17.5.3.1b) -14 Table 17.3.1.1 -14 Eq. (17.4.2.1c)			
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2e_N}{3h_N}}\right) \leq$; 1.0		ACI 318-	-14 Eq. (17.4.2.4)			
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h} \right)$	$\left(\frac{n}{ef}\right) \leq 1.0$		ACI 318-	-14 Eq. (17.4.2.5b)			
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5}{c_{c}} \right)$	$\left(\frac{h_{ef}}{h_{ef}}\right) \leq 1.0$		ACI 318-	-14 Eq. (17.4.2.7b)			
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$			ACI 318-	-14 Eq. (17.4.2.2a)			
Variables							
k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]			
2	4.833	0.000	0.000	7.250			
Ψ _{CN}	c., [in.]	k,	λ	ŕ [psi]			
1.000	∞	24	1.000	3,000			
A. $\lim_{n \to \infty} 2^n$	A., . [in ²]	¥ eet N	¥ ar2 N	W ad N	W en N	N. [lb]	
841.00	210.25	1.000	1.000	1.000	1.000	13,968	_
Results							
V _{cpg} [lb]	¢ concrete	φ _{seismic}	¢ _{nonductile}	∳ V _{cpg} [lb]	V _{ua} [lb]		
111,746	0.700	1.000	1.000	78,222	2,280		
4.4 Concrete edge failure	In direction 2	X+					
$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ec,V} \Psi_{ec,V}$	$_{\text{ed},\text{V}} \psi_{\text{c},\text{V}} \psi_{\text{h},\text{V}}$	$\psi_{\text{parallel},V} V_b$	ACI 318-14 Ec	ą. (17.5.2.1b)			
φ V _{cbg} ≥ V _{ua} A _{Vc} see ACI 318-14, S	ection 17.5.2.	1, Fig. R 17.5.2.1(b)	ACI 318-14 Ta	able 17.3.1.1			
$A_{Vc0} = 4.5 c_{a1}^2$			ACI 318-14 Ec	ą. (17.5.2.1с)			
$\Psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}} \right) \leq 1$	1.0		ACI 318-14 Ec	ą. (17.5.2.5)			
$\Psi_{ed,V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right)$) ≤ 1.0		ACI 318-14 Ec	ว. (17.5.2.6b)			
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$			ACI 318-14 Ec	ą. (17.5.2.8)			
$V_{b} = 9 \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$			ACI 318-14 Ec	ą. (17.5.2.2b)			
Variables							
c _{a1} [in.] 7 250	c _{a2} [in.] 7 250	e _{cV} [in.]	Ψ _{c,V}	h _a [in.] 48 000			
1.200	1.200	0.000	1.000	40.000			
l _e [in.]	$\frac{\lambda_a}{1.000}$	d _a [in.]	f _c [psi]	ψ _{parallel,V}			
0.000	1.000	0.750	3,000	1.000			
Calculations	_						
A _{Vc} [in. ²] A 315.37	$\frac{A_{Vc0}}{236.53}$	Ψ _{ec,V}	Ψ _{ed,V}	 1 000	V _b [lb]		
Results	200.00		0.000		0,020		
V _{cbg} [lb]	ф _{concrete}	ϕ_{seismic}	$\phi_{\text{nonductile}}$	φ V _{cbg} [lb]	V _{ua} [lb]		
11,548	0.750	1.000	1.000	8,661	2,280		
5 Combined tension	on and sh	ear loads					
β _N	β _V	ζ	Utilization β_{NN} [%]	Status			
0.812	0.292	5/3	84	ОК			
$\beta_{NV} = \beta_{N}^{\zeta} + \beta_{V}^{\zeta} <= 1$							

EXHIBIT C WELCOME FIGURE - EXISTING CONDITIONS PLAN

C THE BERGER PARTNERSHIP PS, 2018

