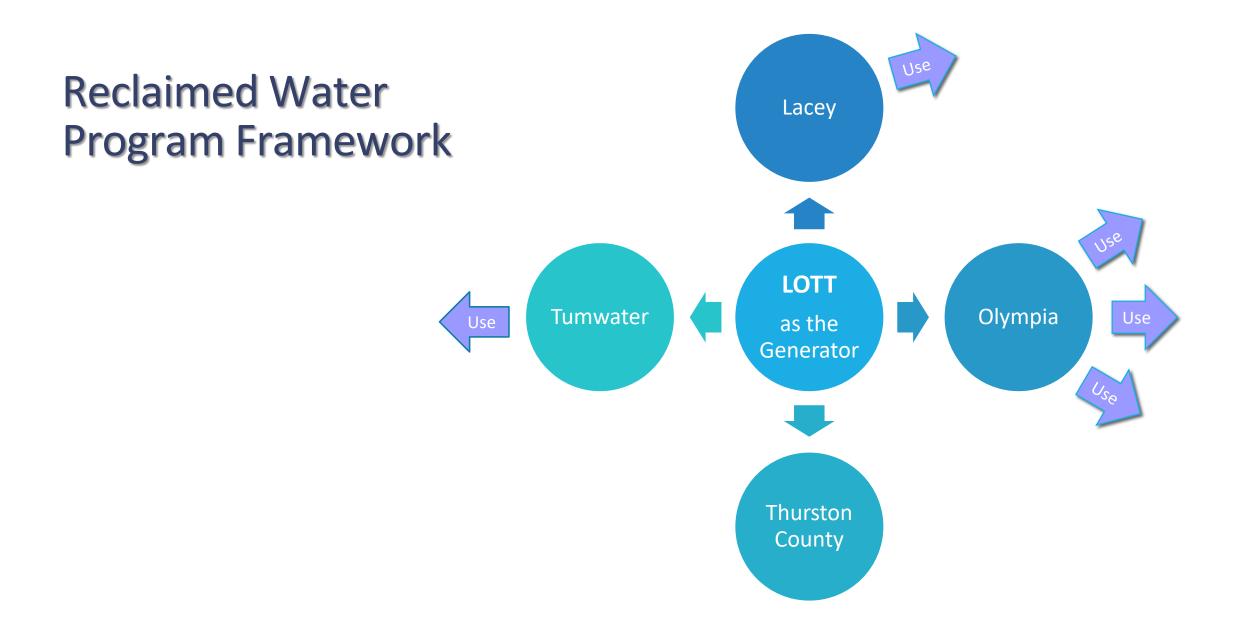


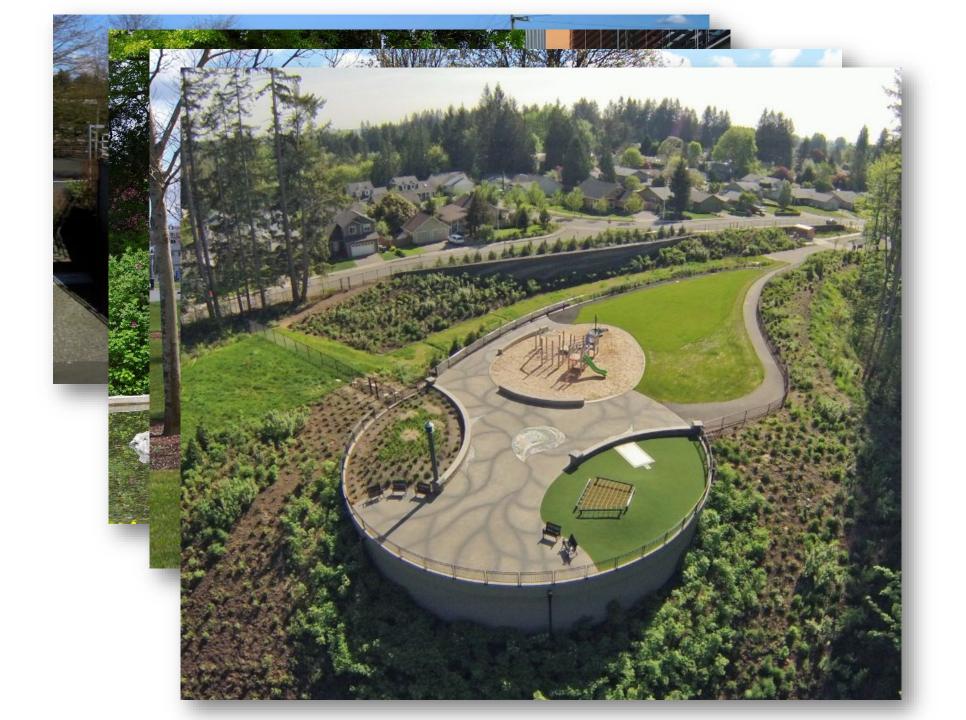
Reclaimed Water and Infiltration Study Update

Presentation to the City of Olympia Utility Advisory Committee November 7, 2019

Why Reclaimed Water?

Public Values:


- Meet future wastewater needs
- Treat wastewater as a valuable resource
- Maximize benefits to the environment
- Provide multiple community benefits


Long-Term Strategy:

- Expand production and use of reclaimed water
- Use reclaimed water to replenish groundwater

	Proposed Plan and Final Supplemental Els
LO	
Was Reso Plan	tewater urce Management
80 SBR Tank 1 SBR Tank 2	Treated Effuent
BRO	WN AND CALDWELL and Associated Firms

Residual Chemicals

Keep Drugs Out of the Water Supply (Parade)

Drugs, household chemicals are a risk 'we haven't fully begun to understand' (The Olympian)

Paxil, Valium, Zoloft, Tagamet, OxyContin, Darvon, nicotine, caffeine, fungicides, antiseptics, anticoagulants and antibiotics. Why are the levels so

high? It could be because people here use more of the drugs detected, or it could be related to

wastewater-treatment plants' processes, said Jim Meador, an environmental toxicologist at the Nationuget Sound salmon are al Oceanic and Atmospheric Administration's Northwest Fisheries Science Center in Seattle and hose drugs and dozens lead author on a paper published last week in the journal Environmental Pollution. "The concentrations in

Samples collected in Tacoma and Bremerton show 81

Scientists don't know if high levels because of residents'

drug use or wastewater-treatment processes

Findings don't indicate threat to human health

drugs and personal-care products

BY LYNDA V. MAPES

eattle Times

aine.

drugs - Prozac, Advil,

hadryl, Lipitor, even

of others are showing up

chinook, researchers have

The estuary water near

in the tissue of juvenile

found, thanks to tainted

wastewater discharge.

the outfalls of sewage-

fluent sampled at the

treatment plants and ef-

effluent were higher than we expected," Meador said. The study sampled effluent for 150 compounds. "We know these e estu-

ma's Commencement

in the water and the tissue

of migratory juvenile chi-

staghorn sculpin. If any-

of drugs in the water

Bay.

Drugs found in salmon,

from tainted wastewater

From left, Michael Caputo, Richard Ramsden and Stuart Munsch collect fish in a beach seine in Commencement Bay in Tacoma.

ANDREW YEH National Oceanic and Atmospheric Administration

from the chemicals on

human health, because

juvenile chinook, and

people don't eat sculpin or

levels are probably too low

However, "you have to

deeper water, researchers found.

Even fish tested in the intended control waters in were sampled in another the Nisqually Estuary, which receives no direct municipal treatment-plant discharge, tested positive The chemicals turned up for an alphabet soup of chemicals in supposedly pristine waters.

nook salmon and resident "That was supposed to be our clean reference area," Meador said. He thing, the study probably underreports the amount was surprised that levels in many cases were higher closer to outfall pipes or in than in many of the 50

largest wastewatertreatment plants around the nation. Those plants study by the EPA.

The findings are of conin the water to be active in cern because most of the humans. But one of the chemicals detected are not reasons the wastewater monitored or regulated in pollutants studied as a wastewater and there is class are called "chemicals little or no established of emerging concern" is science on the environbecause so little is known mental toxicity for the vast about them. majority of the compounds

detected. wonder what it is doing to Meador said he doubted the fish," Meador said, His there would be effects other recent work has

shown that juvenile chinook migrating through contaminated estuaries in Puget Sound die at twice the rate of fish elsewhere.

The drugs detected in the study could be part of the reason, as they have the potential to affect fish growth, behavior, reproduction, immune function and antibiotic resistance.

The drugs selected for testing were chosen on the basis of their widespread use by people, the likelihood of their continued use and the potential for higher levels of contamination as the human population in the Puget Sound region grows.

The results represent only a snapshot, and levels could be higher or lower depending on people's use of drugs and volumes of treatment-plant discharge. For instance, levels of deet (an insect repellent) and antihistamines are probably even higher in summer.

Some regional differences were detected. Substantially higher concentrations of deet, caffeine, ibuprofen and female reproductive hormone were found in Bremerton effluent, compared with the Tacoma site. which researchers concluded could be because of differences in usage. The Puget Sound area contains 106 publicly owned wastewatertreatment plants that discharge to local waters. The amount of drugs and chemicals from all plants into Puget Sound could be as much as 97,000 pounds every year, the study found.

SEE DRUGS, 5A

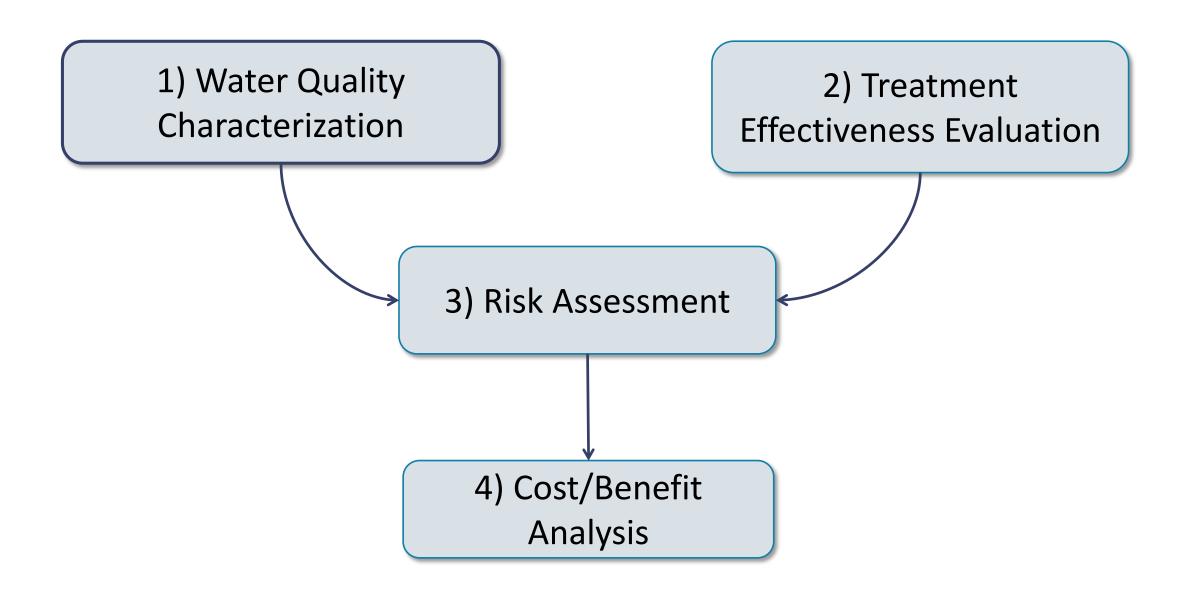
from Bremere mouth of Blair Waterway in Taco-

vere gath-

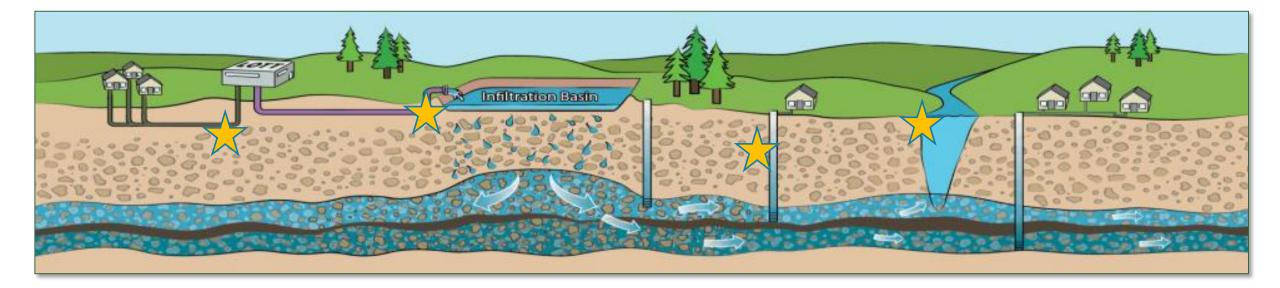
vs in

Thurston County Critical Areas Ordinance

24.10.190 - Reclaimed water


- A. Irrigation with Class A reclaimed water at agronomic rates is permitted in all CARAs, subject to TCC 24.10.030 [General Standards].
- B. Infiltration of reclaimed water (application to the land's surface above agronomic rates) Critical area regulations will be proposed when more information is available to Thurston County from the Regional Groundwater Recharge Scientific Study, and using other studies and information for reclaimed water following the requirements of the Growth Management Act (Chapter 36.70A RCW).

(Ord. No. 14773, § 3(Att. B), 7-24-2012)


Primary Study Question

What are the risks from infiltrating reclaimed water into groundwater because of chemicals that may remain in the water from products people use every day, and what can be done to reduce those risks?

Study Framework

Task 1: Water Quality Characterization

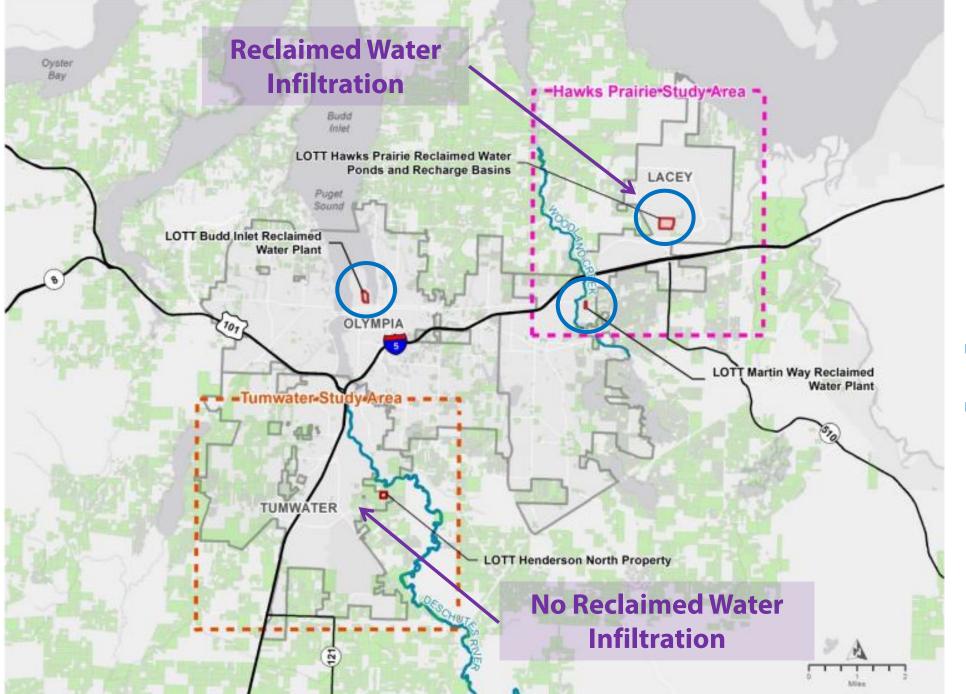
- Wastewater
- Reclaimed Water
- Groundwater
- Surface Water

Water Quality Sampling List

Regulated Parameters

- Pathogens
- Nutrients
- Drinking Water Parameters

Unregulated Parameters (127 Residual Chemicals)


- Medicines
- Personal Care Products
- Foods
- Hormones
- Household Chemicals

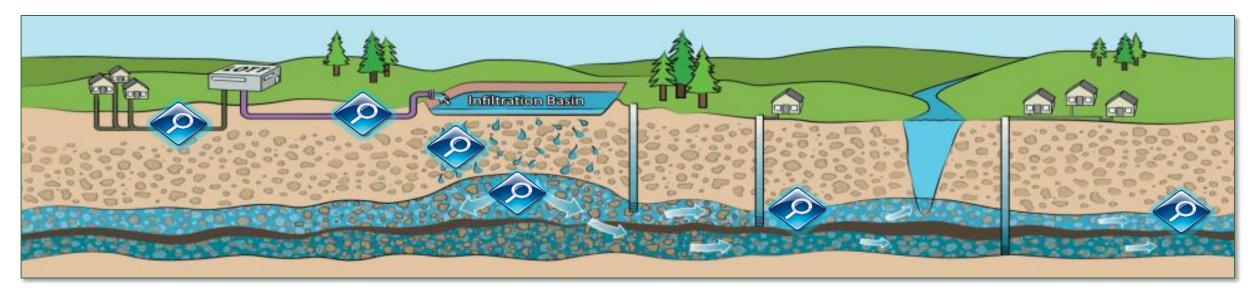
In total, 409 parameters measured

Residual Chemicals Consistently Detected in Reclaimed Water

Chemical	Туре	Chemical	Туре
1,4-Dioxane	Solvent	lopromide	X-ray Contrast
Acesulfame-K	Sweetener	Lopressor	Beta Blocker
Atenolol	Beta Blocker	Metformin	Anti-diabetic
Carbamazepine	Anti-seizure	Primidone	Anti-convulsant
Cotinine	Nicotine Degradate	Sucralose	Sweetener
Fluoxetine	Anti-depressant	ТСЕР	Flame Retardant
Iohexol	X-ray Contrast	ТСРР	Flame Retardant

2014/2015 Sampling

Detections of Residual Chemicals in the Environment

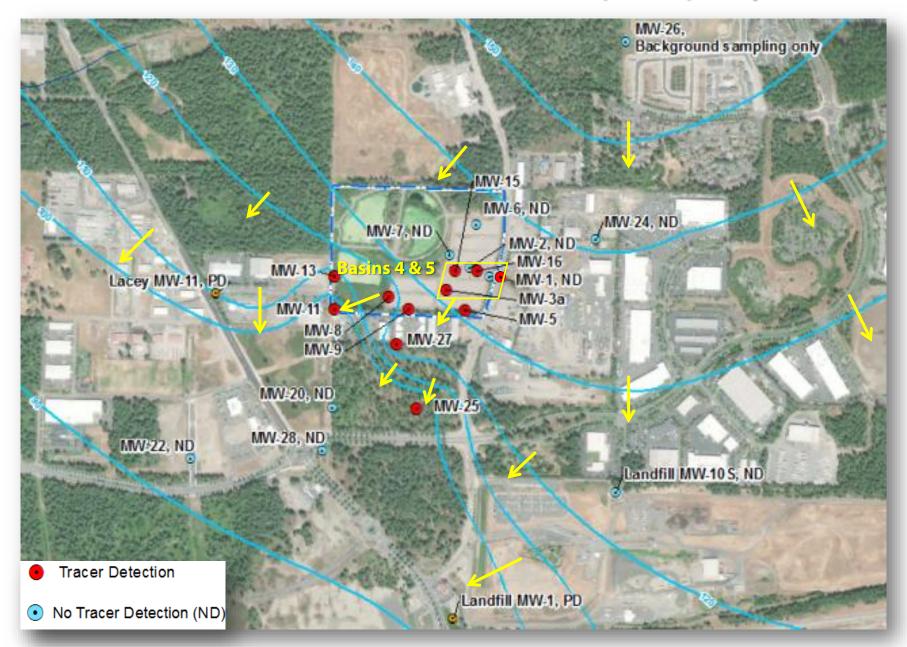

Groundwater: 22

Surface Water: 15

Task 1 Summary: Water Quality Characterization

- Chemicals found in reclaimed water come from products we use everyday
- Some chemicals are effectively removed by LOTT's treatment processes, while others are fairly recalcitrant
- LOTT's reclaimed water quality is similar to that of other facilities
- Some of the residual chemicals detected in reclaimed water are also observed in the environment, including in areas where no reclaimed water use is present

Task 2: Treatment Effectiveness Evaluation

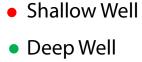


- Tracer Testing
- Water Quality Sampling
- Modeling

Monitoring Well Network

Tracer Detections – Shallow (Qva) Aquifer

Tracer Detections – Sea Level (Qc) Aquifer


Task 2: Summary of Tracer Testing

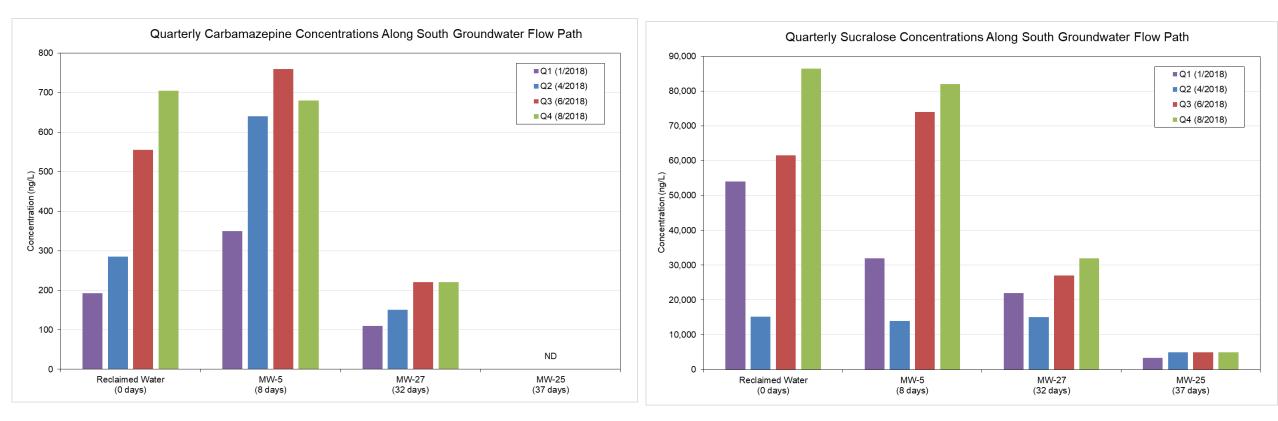
Reclaimed water flow path:

- Confirmed reclaimed water flow paths to the west, southwest, and south
- Some preferential flow paths exist
- Lateral flow dominates
- Existence of flow paths from infiltration basins to Sea Level (Qc) Aquifer

Water Quality Monitoring Network

Residual Chemicals Along Groundwater Flow Paths

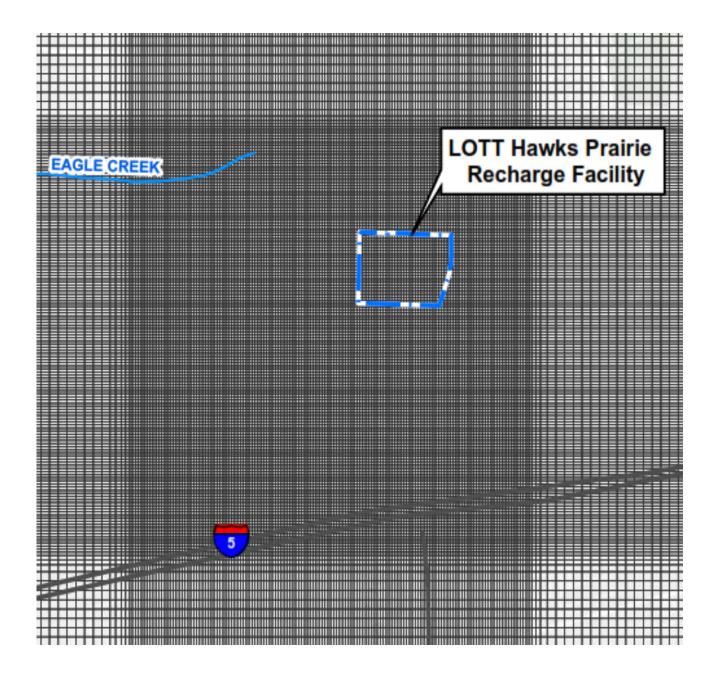
To the South:


- MW-5
- MW-27
- MW-25

To the West:

- MW-3a
- MW-9
- MW-11

Residual Chemicals Along South Groundwater Flow Path

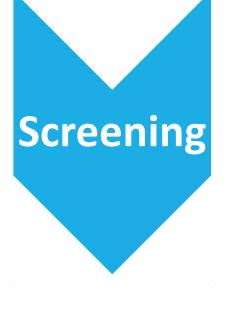


- Concentrations decrease with distance and time
- Some chemicals observed consistently in reclaimed water are not detected after ~30-40 days of travel time
- Some chemicals attenuate more rapidly than others

Water Quality Monitoring Summary

- 24 residual chemicals detected consistently in sampling events in reclaimed water
- Residual chemical attenuation observed in downgradient flow paths
- Dispersion likely a strong factor, with more occurring to the south than to the west
- Residual chemicals observed in Sea Level Aquifer

Task 2: Modeling



Task 3: Risk Assessment

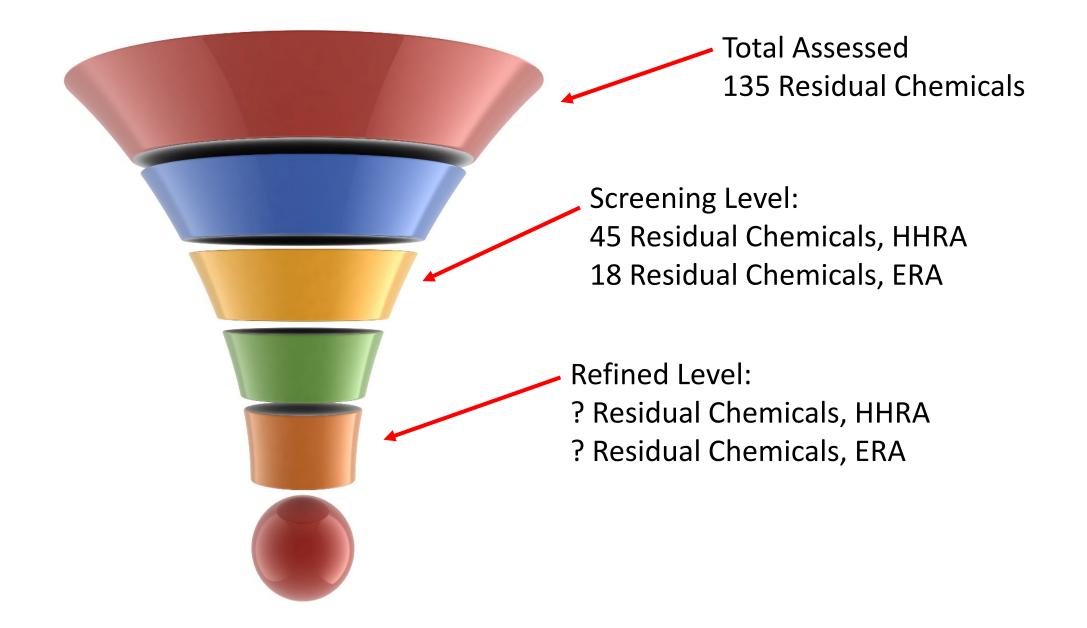
Risk Assessment

• Inputs: data from Tasks 1 and 2

- Focus on chemicals detected at least once in reclaimed water
- Identify chemicals to consider further
 - Comparison of maximum observed concentrations against established toxicity thresholds
 - Chemicals that are persistent or bioaccumulative

Risk Assessment

Inputs: data from Tasks 1 and 2


Screening

Refined

- Focus on chemicals detected at least once in reclaimed water
- Identify chemicals to consider further
 - Comparison of maximum observed concentrations against established toxicity thresholds
 - Chemicals that are persistent or bioaccumulative

- Inputs: groundwater modeling data
- Focus on subset of chemicals from Tier 1 screening
- Consider "actual" exposures in drinking water wells and streams

Risk Assessment

Task 4: Cost Benefit Analysis

Schedule

Activity	2019	2020
Task 2: Groundwater Modeling		
Task 3: Risk Assessment (Human Health and Ecological)		
Task 4: Cost / Benefit Analysis		
Reporting Out and Community Outreach		

Questions?

Wendy Steffensen Environmental Project Manager wendysteffensen@lottcleanwater.org

Lisa Dennis-Perez

Environmental Planning & Communications Director

lisadennis-perez@lottcleanwater.org

Visit LOTT's website:

lottcleanwater.org

Chemicals for Further Evaluation - HHRA

Pharmaceuticals	Hormones	PFAS	Other
Albuterol Carbamazepine Chloramphenicol Primidone	Estradiol Estrone Ethinyl estradiol-17α Norethisterone	Perfluoro-n-hexanoic acid Perfluoropentanoic acid	1,4-Dioxane, industrial chem 4-Nonylphenol, surfactant N-Nitroso dimethylamine (NDMA), industrial chem Quinoline, pesticide Tris(1,3-dichloroisopropyl) phosphate (TDCPP), a flame retardant

Chemicals for Further Evaluation- HHRA

Pharmaceuticals, % of DWEL	Other, % of DWEL
Acesulfame-K, a sugar substitute, 11%	Sucralose, a sugar substitute, 31%
Atenolol, a beta blocker, 23%	TCEP, a flame retardant, 48%
Cotinine, a nicotine degradate, 16%	Thiabendazole, a fungicide, 46%
Diazepam, an anti-anxiety agent, 11%	
Diclofenac, an anti-inflammatory medication,	
31% Dilantin, anti-seizure medication, 11%	
Fluoxetine, an antidepressant, 22%	
Gemfibrozil, an antilipidemic, 14%	
Lopressor, a beta blocker, 30%	
Sulfamethoxazole, a sulfa antibiotic, 13%	
Theophylline, an anti-asthmatic, 24%	

Results – Toxicity Benchmark Comparison - ERA

Chemical Retained for Refined ERA	Chemical Type
4-Nonylphenol	Surfactant
17-alpha ethinyl estradiol	Estrogenic hormone
17-beta estradiol	Estrogenic hormone
Fipronil	Insecticide
Sucralose	Sugar substitute
Tris(chloropropyl)phosphate (TCP)	Flame retardant
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP)	Flame retardant
Theobromine	Alkaloid in chocolate and coffee

Results – Bioaccumulative Chemicals- ERA

Chemical Retained for Refined ERA	Chemical Type
Diclenofac	Anti-inflammatory
Gemfibrozil	Lipid regulator
Meclofenamic acid	Anti-inflammatory
Triclosan	Antibacterial agent
Per- and polyfluoroalkyl compounds (PFAS) (6 chemicals)	Perfluoro surfactants