Attachment 9

Engineering & Planning

8270 28th Court NE Suite 201 Lacey, WA 98502 360.459.1102 www.patrickharron.com

Blackberry Hill Plat Preliminary Stormwater Report

Site Location: 2817 Boulevard Rd Olympia, WA 98501

Prepared for: Kapa Construction LLC PMB 121 1910 E 4TH AVE Olympia, WA 98506

Chris Cramer, P.E. PATRICK HARRON & ASSOCIATES, LLC 8270 28th Court NE, Suite 201 Lacey, WA 98516

> PHA Project #: 18525 Date: Sept. 2019 Rev Feb 2020 Rev April 2020

Project Engineer's Certificate

"I hereby certify that this drainage and erosion control plan for the project known as 2817 Blvd Rd Plat has been prepared by me or under my supervision and meets minimum standards of the City of Olympia and normal standards of engineering practice. I understand that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed by me."

PHA Project#: 18525 P:\2018\18525 2817 Boulevard\Text\Storm Reports\18525 2817 Blvd Rd Prelim Storm Report Townhomes rev2.doc

TABLE OF CONTENTS

Pr	oject Engineer's Certificate	1
1.	PROPOSED PROJECT DESCRIPTION	1
2.	Existing Conditions Description	8
3.	Soils Investigation	8
4.	Wells and Septic Systems	8
5.	Fuel Tanks	8
6.	Subbasin Description	9
7.	Floodplain Analysis	9
8.	Aesthetic Considerations for Facilities	
9.	Facility Selection and Sizing Drainage Concept	10
10	.Conveyance System Analysis and Design	
11	.Offiste Analysis and Mitigation	
12	.Utilities	
13	.Covenants, Dedications, Easements, Agreements	
14	.Other Permits or Conditions	

LIST OF APPENDICES

Appendix A – Stormwater Plans Appendix B – Storm Calculations Appendix C – Geotech Report

LIST OF FIGURES

Figure 1	Vicinity Map	2
Figure 2	Aerial Photograph	4
Figure 3	Existing Site Conditions	5

1. PROPOSED PROJECT DESCRIPTION

This Stormwater Report is submitted in support of the Land Use application for the 2817 Blvd Road project.

The following tabulates the project site data:

The project site is located in the City of Olympia, Washington, within Section25 Township 18 North, Range 2 West, W.M.

This site is located in the Ward drainage basin.

Site address: 2817 Boulevard Rd SE

Assessor #: 12825110600

Well and Septic: None

Parcel Area: 5 Acres

Abbreviated Legal Descriptions:

Section 25 Township 18 Range 2W N2 SE NE

The proposed storm systems have been designed in accordance with the 2016 Stormwater Management Manual for Western Washington as adopted by the City of Olympia.

Project Description:

This project proposes to construction 35 townhomes and 2 single family detached homes to the vacant property. Currently the site is mostly cleared, and access is from Blvd Rd to the east.

The eastern portion of the site is mostly flat with a slight slope to the west. The west half increases slope down to a localized low spot. Soils testing was conducted on the site along with a slope stability study. The slopes are stable for construction and stormwater runoff. The soils were found to not support infiltration in the eastern (uphill portion), but infiltration capacity was found in the lower eastern portion around the identified wetland. The localized low spot will be the ultimate destination for any runoff and enhanced by clearing out organics and topsoil at the base of the slope to act as an infiltration pond base. Filterra unit will be used to treat runoff meeting the enhanced treatment requirement and maintain the current runoff flow path. Roof collection system will be installed to direct runoff around the swales and directly to the pond area.

The proposed collection system has been designed in accordance with the City of Olympia standards and will treat stormwater events per the 2016 Manual and using the WWHM2012 modeling program. Stormwater analysis runoff will meet or exceed 2016 City of Olympia requirements.

Core Requirement #5 summary:

LID BMPs are not proposed for this project, but it will meet the 100% runoff infiltration guideline. The only area that will infiltrate is the eastern portion of the site. All runoff will be collected and directed to the east for treatment and infiltration.

Figure 1 – Vicinity Map

Figure 2 – Ex. Conditions

Figure 3 – Basin and Areas Map

The project consists of only one basin for all onsite and one offsite stormwater (tributary to the wetland area) basin:

Onsite Basin:

AREAS

OFFSITE AREAS (NEW ROW TO					
CL)	SF	ACRE			
OFFSITE AREA TOTAL	11,725	0.27			
ROAD, CURB,& ISLANDS	7,127	0.16			
SIDEWALK	2,282	0.05			
LANDSCAPE	2,316	0.05			
TOTAL	11,725	0.27			
ONSITE AREAS					
PARCEL AREA	205,605	4.72			
ROAD & CURB	11,288	0.26			
S/Ws, D/Ws, & CURB RAMPS	7,530	0.17			
TRACT D/Ws	14,722	0.34			
BUILDINGS & DWs	54,836	1.26			
LANDSCAPE	117,229	2.69			
RESOURCE PARCEL	46,596	1.07			
TOTAL	205,605	4.72			

Offsite Basin:

Tributary area for wetland flow sizing 1.5 Acres

CONDITIONS AND REQUIREMENTS SUMMARY

Core Requirement #1: Preparation of Stormwater Site Plans

Preliminary Land Use Engineering plans have been prepared as part of this submittal, see Appendix A.

Core Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

SWPPP will be prepared with the final report

Core Requirement #3: Source Control of Pollution

Source Control plan will be prepared with the final report.

Core Requirement #4: Preservation of Natural Drainage Systems and Outfalls

Currently the property drains to the west to the localized low point. The stormwater BMPs will maintain the natural direction of flow.

Core Requirement #5: On-site Stormwater Management

This project proposed to meet the LID performance standard through infiltration onsite of all stormwater runoff.

Lawn and Landscape areas

- Post-Construction Soil Quality and Depth (BMP LID.02) – All disturbed areas of the project to be landscaped shall implement BMP LID.02 to restore soil quality and depth.

All disturbed areas due to grading for the building sites and driveways will have top soil stock piled onsite and placed back.

Core Requirement #6: Runoff Treatment

Runoff treatment for the roof area is not required. Parking/driveway lot enhanced runoff treatment will be met by the proposed Filterra Unit.

Core Requirement #7: Flow Control

Flow control will be met by the proposed infiltration pond. The existing berm along the west property line will be verified to meet the required 6.5' of depth to contain the 100 year storm event, with 1' of freeboard.

Core Requirement #8: Wetlands Protection

Wetland report was completed by ACERA in March 2019. An exempt Category IV wetland was found in the localized low portion of the site. No buffer is required.

Per Appendix 1-D, two thresholds are to be met for wetlands under 19 points:

After many iterations, it was found that the summer months, the flows were too low to meet the requirements. Since all runoff is directed to the wetland area, these months were ignored as it's not possible to add more runoff to the wetland area. The WWHM2012 model calculated failure to meet the 15% variance, but has been ignored. Also, for the individual days, some of the winter months had a few isolated days that showed an increase of over 20% in runoff. These single day inputs we also ignored as the pond design will allow for a buffer of the peak inflow rates from reaching the wetland and in reality would not produce as large of a variance in inflow rates that the WWHM2012 model can't calculate using the prescribed method of direct flow modeling.

CRITERION 1:

Per the City of Olympia Drainage Design and Erosion Control Manual (DDECM): "Total volume of water into a wetland during a single precipitation event should not be more than 20% higher or lower than the pre-project volumes."

Summer months cannot be met, too low of flow. No feasible way to increase inflow as all runoff is currently being collected and directed to the wetland area. Isolated days in the winter months exceeded inflow rates, but would be mitigated by the pond design as inflow would not be directly to the wetland.

CRITERION 2:

Per the City of Olympia DDECM:

"Total volume of water into a wetland on a monthly basis should not be more than 15% higher or lower than the pre-project volumes."

All months cannot be met, too low of flow. No feasible way to increase inflow as all runoff is currently being collected and directed to the wetland area.

Core Requirement #9: Operation and Maintenance

O&M Manual will be prepared with the final report.

2. Existing Conditions Description

Ex. Site inventory and analysis per section 3.4.1 Vol 1 DDECM

A Geotech soils test (see attached) has concluded that infiltration is not feasible in the upper eastern portion of the site. The area around the wetland has a measured design rate by PIT of 1"/hr.

Existing drainage patterns are from the east to west, currently the site is mostly cleared and no erosion or runoff issues were noted. The surrounding streets have collection systems in place and functioning correctly. Part of this project will be upgrading the frontage along Blvd Rd that will include a new collection system to bring stormwater onsite for treatment and disposal.

This project is not in an aquifer recharge area or well head protection area.

Currently there is no offsite drainage to or through the project.

3. Soils Investigation

A Geotech soils test (see attached) has concluded that infiltration is only feasible in the western portion of the site, around the existing wetland.

Insight Geologic conducted the soils investigation and tested in several areas for a spot to infiltrate stormwater. No area was found suitable for infiltration in the eastern half.

Since this site was previously cleared, there is no opportunity to propose areas of native soil and vegetation protection. The western area will remain undisturbed except for slope grading of the lots, installation of the Filterra Unit and associated pipes.

This site is generally flat, sloping to the west, for most of the eastern half. The slopes in the west were evaluated for slope stability and the ability to disperse stormwater over. They were found stable and capable of dispersion

Enhanced Treatment is proposed and flow control is handled by the proposed infiltration pond.

Ground water was not encountered in the eastern soil pits.

Contaminated or sensitive soil areas were not found on the lot.

4. Wells and Septic Systems

The project area is served by City sewer and water. No wells, or septic systems exist onsite.

5. Fuel Tanks

No fuel tanks exist onsite.

6. Subbasin Description

The onsite and offsite development is contained in a single basin:

OFFSITE AREA TOTAL	9,908	0.23
ROAD	5,758	0.13
SIDEWALK	1,648	0.04
LANDSCAPE	2,502	0.06
TOTAL	9,908	0.23
ONSITE AREAS		
PARCEL AREA	207,750	4.77
ROAD	9,615	0.22
SIDEWALK & D/W	35,510	0.82
BUILDING	50,715	1.16
LANDSCAPE	62,601	1.44
RESOURCE PARCEL	49,309	1.13
TOTAL	207,750	4.77

Offsite tributary area:

Pasture Area to the north 1.5 Acres

7. Floodplain Analysis

The Site is listed as minimal flood hazard FEMA panel# 53067C0188F. There is a zone A identified in the area of the category IV wetland and the property to the west/southwest.

8. Aesthetic Considerations for Facilities

All storm facilities will consist of landscaping and soil amendment that create a natural look for the area.

Landscaping design will be provided for the disturbed areas onsite and road frontages.

9. Facility Selection and Sizing

Drainage Concept

The onsite road, Boulevard Road frontage (half street), lot areas and alleys will be collected and sent to the west for enhanced treatment through the proposed Filterra unit and then infiltrated in the lower eastern basin. The lower area will remain in the native conditons around the wetland to act as a pond. The existing berm along the west property line will be verified and enlarged if necessary to provide a full 6.5' of depth for the pond area. Roof runoff will be collected separately and piped directly to the infiltration pond.

Stormwater from the project will be treated and discharged offsite per City of Olympia standards (2016). Sizing of the treatment facilities was performed using the WWHM 2012 program.

Core Requirement #5: On-site Stormwater Management

As stated above, all runoff will be collected and piped by an onsite system, serving the proposed road and Boulevard Rd frontage.

Core Requirement #7 Flow Control, is met using the proposed infiltration pond.

For roof areas, runoff will be collected and piped to the pond area.

(See Appendix B for the full WWHM2012 output file)

Pond Sizing:

😰 Basin 1 Mitigated						
Subbasin Name: Basin 1	Subbasin Name: Rasin 1 Designate as Bypass for POC:					
Surface		Interflo w	Groundw	ater		
Flows To : Trapezoidal Por	nd 1	Trapezoidal I	Pond 1			
Area in Basin			🔲 Show Only Selected	ł		
Available Pervious	Acres		Available Impervious	Acres		
A/B, Forest, Flat	0 I	V	ROADS/FLAT	.119		
A/B, Forest, Mod	0		ROADS/MOD	0		
A/B, Forest, Steep	0		ROADS/STEEP	0		
🗖 A/B, Pasture, Flat	0	V	ROOF TOPS/FLAT	1.006		
A/B, Pasture, Mod	0		DRIVEWAYS/FLAT	.987		
🗖 A/B, Pasture, Steep	0		DRIVEWAYS/MOD	0		
🗖 A/B, Lawn, Flat	0		DRIVEWAYS/STEEP	0		
🗖 A/B, Lawn, Mod	0	V	SIDEWALKS/FLAT	.132		
🗖 A/B, Lawn, Steep	0		SIDEWALKS/MOD	0		
C, Forest, Flat	0		SIDEWALKS/STEEP	0		
C, Forest, Mod	0		PARKING/FLAT	0		
C, Forest, Steep	0		PARKING/MOD	0		
C, Pasture, Flat	1.5		PARKING/STEEP	0		
C, Pasture, Mod	0	V	POND	.23		
C, Pasture, Steep	.899		Porous Pavement	0		
🔽 C, Lawn, Flat	1.617					
🗖 C, Lawn, Mod	0					
🔲 C, Lawn, Steep	0					
SAT, Forest, Flat	0					
SAT, Forest, Mod	0					
🗾 🔲 SAT, Forest, Steep	0					
Denieur Tatal	A					
Pervious Lotal 4.016	Acres					
Impervious Lotal 2.474	Acres					
basin lotal 6.49	Acres					
Precipitation Gage 2.COUF	RT HO Court Hou:	se	 Auto Assig 	n Gages		
Deselect Zero S	elect By:		GO			

🗗 Trapezoidal Pond 1 Mitigated						×
FacilityName Tr	rapezoidal Pono	11	Facility Type			
	(Outlet 1	Outlet 2		Outlet 3	
Downstream Conr	nections	0	Lateral Basi	n 1	0]
Precipitation Applied t	to Facility		Auto Po	ond	Quick Pond	
Evaporation Applied t	to Facility		Facilit	y Dimensi	ion Diagram	
Facility Dimension	ons		Outlet St	ructure Da	ata	
Facility Bottom Elevation	n (ft)	1	Riser Height (ft)) 6.5		
Bottom Length (ft)		110	Riser Diameter	(in) 10		
Bottom Width (ft)		110	Riser Type	Flat		
Effective Depth (ft)		7.5	Notch Type			
Left Side Slope (H/V)		0.125				
Bottom Side Slope (H/V	Ŋ	0.125				
Right Side Slope (H/V)		0.125				
Top Side Slope (H/V)		0.125	Orifice [Diameter I	Height	
Infiltration		Yes 🗧	Number (in) ((ft)	
Measured Infiltration Ra	ite (in/hr)	1 ÷	1 🚺	اب: T	0 ÷	
Reduction Factor(infilt*fa	actor)	1	2 🚺		0 ÷	
Use Wetted Surface Are	ea (sidewalls)	Yes 🕂	3 🛛	n ÷l	0 ÷	
Total Volume Infiltrated	(ac-ft)	771.259				
Total Volume Through F	Hiser (ac-It)	U 774 00	Pond Volume a	at Riser Head	(ac-ft) 1.856	
Fotal Volume Through F	-acility (ac-tt)	100	Show Pond	d Table	Open Table 🕂	
Percent Infiltrated		100	Initial		0	
Size Infiltration F	Pond					
Target %: 100 🕂	+					
Tide Gate Time S	Series Dem	and				
- Determine Outlet V	Vith Tide Gat	te				
E Lleo Tido Coto	an naciaa					
To se nue Gale						
Lide Gate Elevatio	on (tt) 0		Downstream Co	nnection		
Overflow Elevation	(ft) 0		Iterations		0	

🔁 Lateral Basin 1 Mitigated				×
Element Name	Lat <mark>eral Basin 1</mark>		🗖 Designate as l	Bypass for F
Runoff Type	Surface	Interflow	Groundwater	
Downstream Connection	0	0	0	
Element Type	Lateral Pervious Flow	v Basin		
Soil (PERLND) Type	A/B, Lawn, Flat		Change	
Lateral Area (ac)	0.3			
Precipitation Gage 2 - COURT	"HO Court House	-		

Filterra Sizing:

Only the onsite road, Boulevard frontage road, and lot areas were used to size the Filterra unit for runoff treatment.

Basin 1 Mitigated					×
Subbasin Name: Basin 1 Designate as Bypass for POC:					
Surface		Interflow	(Groundwa	ter
Flows To : Trapezoidal Por	nd 1	Trapezoidal	Pond 1		
Area in Basin			🔲 Show Onl	ly Selected	
Available Pervious	Acres		Available Impe	ervious	Acres
🔺 🔲 A/B, Forest, Flat	0		ROADS/FLAT		.119
A/B, Forest, Mod	0		ROADS/MOD		0
A/B, Forest, Steep	0		ROADS/STEEP		0
A/B, Pasture, Flat	0		ROOF TOPS/FLAT		0
A/B, Pasture, Mod	0		DRIVEWAYS/FLAT		.987
A/B, Pasture, Steep	0		DRIVEWAYS/MOD		0
🗖 A/B, Lawn, Flat	0		DRIVEWAYS/STEE	P	0
A/B, Lawn, Mod	0		SIDEWALKS/FLAT		.132
🗖 A/B, Lawn, Steep	0		SIDEWALKS/MOD		0
C, Forest, Flat	0		SIDEWALKS/STEE	P	0
C, Forest, Mod	0		PARKING/FLAT		0
C, Forest, Steep	0		PARKING/MOD		0
C, Pasture, Flat	0		PARKING/STEEP		0
C, Pasture, Mod	0		POND		0
C, Pasture, Steep	0		Porous Pavement		0
C, Lawn, Flat	1.617				
C, Lawn, Mod	0				
C, Lawn, Steep	0				
SAT, Forest, Flat	0				
SAT, Forest, Mod	0				
SAT, Forest, Steep	0				
Pervious Total 1 617	Acres				
Impervious Total 1 238	Acres				
Basin Total 2.855	Acres				
Precipitation Gage 2 - COUR	T HO Court Ho	use	•	Auto Assign	Gages
Deselect Zero Sc	elect By:		GO		

Flow Frequency					
Flow(cfs)	0701 15m				
2 Year =	0.6386				
5 Year =	0.9019				
10 Year =	1.0677				
25 Year =	1.2670				
50 Year =	1.4085				
100 Year =	1.5445				

ſ	1					
Į	Due	On-Line BMP		Off-Line BMP		
	Run Analysis	24 hour Volume (ac-ft) Standard Flow Rate (cfs)	0.2681	Standard Flow Ra	te (cfs) 0.1291	
ļ	Stream Protoc	tion Duration UD D	uration [Sudatas Oscalita	Hudrograph
	Stream Frotec			-low riequency	Water Quality	
	Wetland Input \	/olumesLID Report	Hecharge Dur	ation Recharge	e Predeveloped	Recharge Mitigated

10. Conveyance System Analysis and Design

Conveyance System will be installed for Boulevard Road frontage and the proposed onsite road will have a collection system installed to convey stormwater to the west for disposal. 12" min size and 0.5% slope will be used in the ROW.

11.Offsite Analysis and Mitigation

Project is located in the Ward Lake Drainage basin.

For this project, no offsite mitigation is proposed. Stormwater from the onsite areas of the parcel will have runoff collected and disposed of onsite. Downstream analysis is not required.

Frontage improvements will be completed to Boulevard Road for the western portion of the ROW.

12.Utilities

The parcel currently has City Sewer and Water in Boulevard road. Connections will be made to extend services onsite. No onsite septic systems exist.

13. Covenants, Dedications, Easements, Agreements

This project will have a maintenance agreement for the CAVFS, collection system, and landscaping.

The Program Operator will be the Owner.

No dedication of tracts will be required due to private Ownership and maintenance.

14.Other Permits or Conditions

The project will apply for Engineering permit along with the Building Permit from the City of Olympia.

No other permits or reviews required by agencies other than City of Olympia.

Appendix A Storm Plans

Appendix B Storm Calculations

P:\2018\18525 2817 Boulevard\Text\Storm Reports\18525 2817 Blvd Rd Prelim Storm Report Townhomes rev2.doc

WWHM2012 PROJECT REPORT

Project Name: 2817 blvd rd rev2
Site Name: 2817 blvd rd
Site Address:
City :
Report Date: 4/20/2020
Gage : Courthouse
Data Start : 1955/10/01
Data End : 2011/09/30
Precip Scale: 0.90
Version Date: 2019/09/13
Version : 4.2.17

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	acre				
C, Pasture, Flat	1.5				
C, Pasture, Steep	.899				
C, Lawn, Flat	4.091				
Pervious Total	6.49				
Impervious Land Use	acre				
Impervious Total	0				
Basin Total 6					

Element Flows To: Surface

Interflow

Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Lawn, Flat	1.621
C, Pasture, Flat	1.5
C, Pasture, Steep	.899
Pervious Total	4.02
Impervious Land Use	acre
ROADS FLAT	0.42
ROOF TOPS FLAT	1.13
DRIVEWAYS FLAT	0.47
SIDEWALKS FLAT	0.22
POND	0.23
Impervious Total	2.47
Basin Total	6.49

Element Flows To:GroundwaterSurfaceInterflowGroundwaterTrapezoidal Pond 1Trapezoidal Pond 1

```
Name
       : Trapezoidal Pond 1
Bottom Length: 104.00 ft.
Bottom Width: 105.00 ft.
Depth: 7.5 ft.
Volume at riser head: 1.7008 acre-feet.
Infiltration On
Infiltration rate: 1
Infiltration safety factor: 1
Wetted surface area On
Total Volume Infiltrated (ac-ft.): 770.909
Total Volume Through Riser (ac-ft.): 0.02
Total Volume Through Facility (ac-ft.): 770.929
Percent Infiltrated: 100
Total Precip Applied to Facility: 0
Total Evap From Facility: 0
Side slope 1: 0.4 To 1
Side slope 2: 0.08 To 1
Side slope 3: 0.08 To 1
Side slope 4: 0.4 To 1
Discharge Structure
Riser Height: 6.5 ft.
Riser Diameter: 10 in.
Element Flows To:
Outlet 1
                      Outlet 2
Lateral Basin 1
```

1.0000	0.250	0.000	0.000	0.000
1.0833	0.250	0.020	0.000	0.253
1.1667	0.251	0.041	0.000	0.253
1 2500	0 251	0 062	0 000	0 253
1 3333	0 251	0 083	0 000	0.253
1 1167	0.251	0.104	0.000	0.253
1 5000	0.251	0.125	0.000	0.200
1 5000	0.251	0.125	0.000	0.200
1.5833	0.252	0.146	0.000	0.254
1.666/	0.252	0.16/	0.000	0.254
1.7500	0.252	0.188	0.000	0.254
1.8333	0.252	0.209	0.000	0.254
1.9167	0.252	0.230	0.000	0.254
2.0000	0.253	0.251	0.000	0.255
2.0833	0.253	0.272	0.000	0.255
2.1667	0.253	0.294	0.000	0.255
2.2500	0.253	0.315	0.000	0.255
2.3333	0.253	0.336	0.000	0.255
2.4167	0.254	0.357	0.000	0.256
2.5000	0.254	0.378	0.000	0.256
2.5833	0.254	0.399	0.000	0.256
2 6667	0 254	0 421	0 000	0 256
2 7500	0 254	0 442	0 000	0.256
2.7300	0.254	0.442	0.000	0.250
2.0355	0.255	0.405	0.000	0.257
2.9107	0.255	0.404	0.000	0.257
3.0000	0.255	0.508	0.000	0.257
3.0833	0.255	0.527	0.000	0.257
3.166/	0.255	0.548	0.000	0.25/
3.2500	0.255	0.569	0.000	0.258
3.3333	0.256	0.591	0.000	0.258
3.4167	0.256	0.612	0.000	0.258
3.5000	0.256	0.633	0.000	0.258
3.5833	0.256	0.655	0.000	0.258
3.6667	0.256	0.676	0.000	0.259
3.7500	0.257	0.698	0.000	0.259
3.8333	0.257	0.719	0.000	0.259
3.9167	0.257	0.741	0.000	0.259
4.0000	0.257	0.762	0.000	0.259
4.0833	0.257	0.784	0.000	0.260
4.1667	0.258	0.805	0.000	0.260
4.2500	0.258	0.827	0.000	0.260
4 3333	0 258	0 848	0 000	0 260
4 4167	0 258	0 870	0 000	0 260
4 5000	0.258	0.891	0.000	0.260
1 5833	0.250	0.0013	0.000	0.201
4.5655	0.250	0.024	0.000	0.201
4.0007	0.259	0.934	0.000	0.201
4.7500	0.259	0.956	0.000	0.201
4.8333	0.259	0.978	0.000	0.261
4.916/	0.259	0.999	0.000	0.262
5.0000	0.260	1.021	0.000	0.262
5.0833	0.260	1.043	0.000	0.262
5.1667	0.260	1.064	0.000	0.262
5.2500	0.260	1.086	0.000	0.262
5.3333	0.260	1.108	0.000	0.262
5.4167	0.261	1.129	0.000	0.263
5.5000	0.261	1.151	0.000	0.263
5.5833	0.261	1.173	0.000	0.263
5.6667	0.261	1.195	0.000	0.263
5.7500	0.261	1.216	0.000	0.263
5.8333	0.261	1.238	0.000	0.264

5.9167	0.262	1.260	0.000	0.264
6.0000	0.262	1.282	0.000	0.264
6.0833	0.262	1.304	0.000	0.264
6.1667	0.262	1.326	0.000	0.264
6.2500	0.262	1.348	0.000	0.265
6.3333	0.263	1.370	0.000	0.265
6.4167	0.263	1.392	0.000	0.265
6.5000	0.263	1.413	0.000	0.265
6.5833	0.263	1.435	0.000	0.265
6.6667	0.263	1.457	0.000	0.266
6.7500	0.264	1.479	0.000	0.266
6.8333	0.264	1.501	0.000	0.266
6.9167	0.264	1.523	0.000	0.266
7.0000	0.264	1.546	0.000	0.266
7.0833	0.264	1.568	0.000	0.267
7.1667	0.265	1.590	0.000	0.267
7.2500	0.265	1.612	0.000	0.267
7.3333	0.265	1.634	0.000	0.267
7.4167	0.265	1.656	0.000	0.267
7.5000	0.265	1.678	0.000	0.268
7.5833	0.266	1.700	0.211	0.268
7.6667	0.266	1.723	0.575	0.268
7.7500	0.266	1.745	0.957	0.268
7.8333	0.266	1.767	1.242	0.268
7.9167	0.266	1.789	1.396	0.269
8.0000	0.267	1.811	1.546	0.269
8.0833	0.267	1.834	1.670	0.269
8.1667	0.267	1.856	1.785	0.269
8.2500	0.267	1.878	1.894	0.269
8.3333	0.267	1.901	1.996	0.270
8.4167	0.268	1.923	2.094	0.270
8.5000	0.268	1.945	2.187	0.270
8.5833	0.268	1.968	2.276	0.270

Name : Lateral Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	acre
A B, Lawn, Flat	. 3
-11 -	

Element Flows To: Surface

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:6.49

100 year

1984

Mitigated Landuse Totals for POC #1 Total Pervious Area:4.32 Total Impervious Area:2.47

```
Flow Frequency Return Periods for Predeveloped. POC #1
Return Period
                      Flow(cfs)
2 year
                        0.53368
                        0.970144
5 year
10 year
                        1.308091
25 year
                        1.781103
50 year
                        2.162309
100 year
                        2.56511
Flow Frequency Return Periods for Mitigated. POC #1
Return Period
                      Flow(cfs)
2 year
                        0.15418
5 year
                        0.219979
10 year
                        0.253709
25 year
                        0.286952
50 year
                        0.306268
```

0.321931

Stream Protection Duration Annual Peaks for Predeveloped and Mitigated. POC #1 Predeveloped Mitigated Year 1956 0.198 0.436 1957 1.347 0.147 1958 0.570 0.080 1959 0.470 0.141 0.219 1960 2.053 1961 0.353 0.175 0.091 1962 0.143 0.231 1963 1.566 1964 0.345 0.171 1965 0.653 0.126 1966 0.266 0.111 1967 1.247 0.163 1968 0.682 0.104 0.110 1969 0.236 0.181 1970 0.372 0.201 1971 0.509 1972 1.486 0.234 1973 0.578 0.214 0.154 1974 0.779 1975 0.368 0.109 1976 0.639 0.200 1977 0.507 0.047 1978 0.469 0.217 1979 0.398 0.086 1980 0.382 0.191 1981 1.130 0.159 1982 0.694 0.172 1983 0.761 0.143

1.456

0.098

1985	0.245	0.090
1986	0.730	0.181
1987	0.632	0.222
1988	0.267	0.112
1989	0.267	0.063
1990	1.150	0.200
1991	1.415	0.299
1992	0.636	0.192
1993	0.343	0.092
1994	0.340	0.082
1995	0.476	0.240
1996	1.598	0.318
1997	0.073	0.036
1998	0.092	0.039
1999	0.546	0.252
2000	0.266	0.145
2001	0.165	0.033
2002	0.748	0.246
2003	0.318	0.160
2004	2.022	0.207
2005	0.370	0.103
2006	0.562	0.204
2007	1.072	0.215
2008	0.928	0.203
2009	0.490	0.155
2010	0.184	0.099
2011	0.444	0.191

Stream	Protection Durat:	ion	
Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC #1
Rank	Predeveloped	Mitigated	
1	2.0533	0.3185	
2	2.0224	0.2986	
3	1.5980	0.2520	
4	1.5662	0.2464	
5	1.4860	0.2403	
6	1.4565	0.2342	
7	1.4146	0.2312	
8	1.3466	0.2216	
9	1.2472	0.2188	
10	1.1495	0.2170	
11	1.1304	0.2154	
12	1.0720	0.2138	
13	0.9281	0.2075	
14	0.7787	0.2045	
15	0.7610	0.2035	
16	0.7479	0.2006	
17	0.7300	0.2002	
18	0.6940	0.1999	
19	0.6821	0.1981	
20	0.6530	0.1923	
21	0.6393	0.1911	
22	0.6360	0.1908	
23	0.6320	0.1811	
24	0.5782	0.1808	
25	0.5702	0.1746	
26	0.5619	0.1718	
27	0.5460	0.1708	

28	0.5091	0.1633
29	0.5067	0.1597
30	0.4896	0.1585
31	0.4763	0.1550
32	0.4703	0.1540
33	0.4690	0.1471
34	0.4444	0.1454
35	0.4365	0.1430
36	0.3985	0.1414
37	0.3816	0.1264
38	0.3717	0.1124
39	0.3697	0.1106
40	0.3684	0.1103
41	0.3529	0.1087
42	0.3446	0.1043
43	0.3426	0.1033
44	0.3402	0.0986
45	0.3177	0.0985
46	0.2671	0.0916
47	0.2669	0.0907
48	0.2665	0.0897
49	0.2663	0.0861
50	0.2445	0.0821
51	0.2364	0.0800
52	0.1839	0.0630
53	0.1655	0.0469
54	0.1427	0.0387
55	0.0922	0.0362
56	0.0728	0.0334

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Per	centage	e Pass/Fail
0.2668	7271	1540	21	Pass
0.2860	5802	693	11	Pass
0.3051	4595	9	0	Pass
0.3243	3747	0	0	Pass
0.3434	3100	0	0	Pass
0.3626	2645	0	0	Pass
0.3817	2172	0	0	Pass
0.4009	1806	0	0	Pass
0.4200	1505	0	0	Pass
0.4392	1174	0	0	Pass
0.4583	973	0	0	Pass
0.4774	808	0	0	Pass
0.4966	699	0	0	Pass
0.5157	626	0	0	Pass
0.5349	561	0	0	Pass
0.5540	475	0	0	Pass
0.5732	406	0	0	Pass
0.5923	355	0	0	Pass
0.6115	316	0	0	Pass
0.6306	282	0	0	Pass
0.6498	248	0	0	Pass

0.6689	227	0	0	Pass
0.6881	208	0	0	Pass
0.7072	190	0	0	Pass
0.7263	173	0	0	Pass
0.7455	162	0	0	Pass
0.7646	144	0	0	Pass
0.7838	131	0	0	Pass
0.8029	117	0	0	Pass
0.8221	111	0	0	Pass
0.8412	103	0	0	Pass
0.8604	97	0	0	Pass
0.8795	92	0	0	Pass
0.8987	84	0	0	Pass
0.9178	79	0	0	Pass
0.9370	74	0	0	Pass
0.9561	67	0	0	Pass
0.9752	62	0	0	Pass
0.9944	60	0	0	Pass
1.0135	58	0	0	Pass
1.0327	57	0	0	Pass
1.0518	56	0	0	Pass
1.0710	51	0	0	Pass
1.0901	45	0	0	Pass
1.1093	44	0	0	Pass
1.1284	42	0	0	Pass
1.1476	3.5	0	0	Pass
1 1667	34	0	Õ	Pass
1 1859	28	0	0	Pass
1 2050	26	0	0	Pass
1 2241	23	0	0	Pass
1 2433	20	0	0	Pass
1 2624	18	0	0	Pass
1 2816	18	0	0	Dass
1 3007	15	0	0	Dass
1 3199	15	0	0	Dass
1 3390	15	0	0	Pass
1 3582	13	0	0	Pass
1 3773	13	0	0	Pass
1 2065	10	0	0	Pass
1 1156	10	0	0	Pass
1 1210	10	0	0	Pass
1 1520	9	0	0	Pass
1 4730	9 7	0	0	Pass
1 4/30	6	0	0	Pass
1 5112	6	0	0	Pass
1.5115	C C	0	0	Pass
1.5305	ю Г	0	0	Pass
1.5496	2	0	0	Pass
1.5688	4	0	0	Pass
1.5879	4	0	0	Pass
1.60/1	3	0	0	Pass
1.6262	3	0	0	Pass
1.6454	3	U	U	Pass
1.6645	3	U	U	Pass
1.6837	3	0	0	Pass
1.7028	3	0	0	Pass
1.7219	3	0	0	Pass
1.7411	3	0	0	Pass
1.7602	3	0	0	Pass
1.7794	3	0	0	Pass

1.7985	3	0	0	Pass	
1.8177	3	0	0	Pass	
1.8368	3	0	0	Pass	
1.8560	2	0	0	Pass	
1.8751	2	0	0	Pass	
1.8943	2	0	0	Pass	
1.9134	2	0	0	Pass	
1.9326	2	0	0	Pass	
1.9517	2	0	0	Pass	
1.9708	2	0	0	Pass	
1.9900	2	0	0	Pass	
2.0091	2	0	0	Pass	
2.0283	1	0	0	Pass	
2.0474	1	0	0	Pass	
2.0666	0	0	0	Pass	
2.0857	0	0	0	Pass	
2.1049	0	0	0	Pass	
2.1240	0	0	0	Pass	
2.1432	0	0	0	Pass	
2.1623	0	0	0	Pass	

LID Duration

LID Duration	L		
Annual Peaks	for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1956	0.436	0.198	
1957	1.347	0.147	
1958	0.570	0.080	
1959	0.470	0.141	
1960	2.053	0.219	
1961	0.353	0.175	
1962	0.143	0.091	
1963	1.566	0.231	
1964	0.345	0.171	
1965	0.653	0.126	
1966	0.266	0.111	
1967	1.247	0.163	
1968	0.682	0.104	
1969	0.236	0.110	
1970	0.372	0.181	
1971	0.509	0.201	
1972	1.486	0.234	
1973	0.578	0.214	
1974	0.779	0.154	
1975	0.368	0.109	
1976	0.639	0.200	
1977	0.507	0.047	
1978	0.469	0.217	
1979	0.398	0.086	
1980	0.382	0.191	
1981	1.130	0.159	
1982	0.694	0.172	
1983	0.761	0.143	
1984	1.456	0.098	

0.245	0.090
0.730	0.181
0.632	0.222
0.267	0.112
0.267	0.063
1.150	0.200
1.415	0.299
0.636	0.192
0.343	0.092
0.340	0.082
0.476	0.240
1.598	0.318
0.073	0.036
0.092	0.039
0.546	0.252
0.266	0.145
0.165	0.033
0.748	0.246
0.318	0.160
2.022	0.207
0.370	0.103
0.562	0.204
1.072	0.215
0.928	0.203
0.490	0.155
0.184	0.099
0.444	0.191
	0.245 0.730 0.632 0.267 0.267 1.150 1.415 0.636 0.343 0.340 0.476 1.598 0.073 0.092 0.546 0.266 0.165 0.748 0.318 2.022 0.370 0.562 1.072 0.928 0.490 0.184 0.444

LID Du	ration		
Ranked	Annual Peaks for	Predeveloped and Mitigated. PC	C #1
Rank	Predeveloped	Mitigated	
1	2.0533	0.3185	
2	2.0224	0.2986	
3	1.5980	0.2520	
4	1.5662	0.2464	
5	1.4860	0.2403	
6	1.4565	0.2342	
7	1.4146	0.2312	
8	1.3466	0.2216	
9	1.2472	0.2188	
10	1.1495	0.2170	
11	1.1304	0.2154	
12	1.0720	0.2138	
13	0.9281	0.2075	
14	0.7787	0.2045	
15	0.7610	0.2035	
16	0.7479	0.2006	
17	0.7300	0.2002	
18	0.6940	0.1999	
19	0.6821	0.1981	
20	0.6530	0.1923	
21	0.6393	0.1911	
22	0.6360	0.1908	
23	0.6320	0.1811	
24	0.5782	0.1808	
25	0.5702	0.1746	
26	0.5619	0.1718	
27	0.5460	0.1708	

28	0.5091	0.1633
29	0.5067	0.1597
30	0.4896	0.1585
31	0.4763	0.1550
32	0.4703	0.1540
33	0.4690	0.1471
34	0.4444	0.1454
35	0.4365	0.1430
36	0.3985	0.1414
37	0.3816	0.1264
38	0.3717	0.1124
39	0.3697	0.1106
40	0.3684	0.1103
41	0.3529	0.1087
42	0.3446	0.1043
43	0.3426	0.1033
44	0.3402	0.0986
45	0.3177	0.0985
46	0.2671	0.0916
47	0.2669	0.0907
48	0.2665	0.0897
49	0.2663	0.0861
50	0.2445	0.0821
51	0.2364	0.0800
52	0.1839	0.0630
53	0.1655	0.0469
54	0.1427	0.0387
55	0.0922	0.0362
56	0.0728	0.0334

LID Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Per	centage	Pass/Fail
0.0427	256248	279418	109	Fail
0.0450	243288	262335	107	Fail
0.0472	231114	246430	106	Fail
0.0495	219725	232488	105	Fail
0.0518	208925	218351	104	Fail
0.0540	198911	204802	102	Fail
0.0563	189368	191351	101	Fail
0.0585	180355	178667	99	Pass
0.0608	172108	167533	97	Pass
0.0631	164391	157558	95	Pass
0.0653	157106	148722	94	Pass
0.0676	150155	139905	93	Pass
0.0699	143577	132149	92	Pass
0.0721	137294	124354	90	Pass
0.0744	131344	117246	89	Pass
0.0767	125689	110903	88	Pass
0.0789	120289	104738	87	Pass
0.0812	115223	99554	86	Pass
0.0834	110334	94586	85	Pass
0.0857	105759	89068	84	Pass
0.0880	101439	84041	82	Pass

0.0902	97276	79702	81	Pass
0.0925	93270	75421	80	Pass
0.0948	89422	71887	80	Pass
0.0970	85828	68392	79	Pass
0.0993	82372	65034	78	Pass
0.1016	79152	61873	78	Pass
0.1038	76069	58593	77	Pass
0.1061	73163	55962	76	Pass
0.1084	70336	53292	75	Pass
0.1106	67665	50307	74	Pass
0.1129	65152	48029	73	Pass
0.1151	62756	45752	72	Pass
0.1174	60321	43690	72	Pass
0.1197	58161	42040	72	Pass
0.1219	56100	40293	71	Pass
0.1242	54156	38663	71	Pass
0.1265	52310	36955	70	Pass
0.1287	50464	35580	70	Pass
0.1310	48717	34166	70	Pass
0.1333	47028	32713	69	Pass
0.1355	45437	31103	68	Pass
0.1378	43945	29572	67	Pass
0.1401	42433	28177	66	Pass
0.1423	40980	26901	65	Pass
0.1446	39645	25644	64	Pass
0.1468	38329	24309	63	Pass
0.1491	37014	23013	62	Pass
0.1514	35777	21835	61	Pass
0.1536	34559	20814	60	Pass
0.1559	33440	19793	59	Pass
0.1582	32360	18780	58	Pass
0.1604	31260	17745	56	Pass
0.1627	30278	16916	55	Pass
0.1650	29257	16119	55	Pass
0.1672	28197	15363	54	Pass
0.1695	27313	14629	53	Pass
0.1717	26410	13943	52	Pass
0.1740	25546	13266	51	Pass
0.1763	24722	12645	51	Pass
0.1785	23897	11982	50	Pass
0.1808	23151	11348	49	Pass
0.1831	22404	10688	47	Pass
0.1853	21599	9975	46	Pass
0.1876	20932	9408	44	Pass
0.1899	20186	8895	44	Pass
0.1921	19467	8255	42	Pass
0.1944	18843	7693	40	Pass
0.1967	18206	7252	39	Pass
0.1989	17613	6814	38	Pass
0.2012	17119	6360	37	Pass
0.2034	16557	6009	36	Pass
0.2057	16046	5679	35	Pass
0.2080	15552	5296	34	Pass
0.2102	15071	4964	32	Pass
0.2125	14603	4677	32	Pass
0.2148	14179	4412	31	Pass
0.2170	13733	4135	30	Pass
0.2193	13331	3945	29	Pass
0.2216	12944	3778	29	Pass

0.2238	12563	3623	28	Pass
0.2261	12206	3472	28	Pass
0.2284	11829	3332	28	Pass
0.2306	11479	3187	27	Pass
0.2329	11165	3069	27	Pass
0.2351	10839	2959	27	Pass
0.2374	10539	2849	27	Pass
0.2397	10250	2741	26	Pass
0.2419	9944	2637	26	Pass
0.2442	9684	2547	26	Pass
0.2465	9382	2437	25	Pass
0.2487	9105	2348	25	Pass
0.2510	8846	2262	25	Pass
0.2533	8577	2195	25	Pass
0.2555	8320	2132	25	Pass
0.2578	8070	2032	25	Pass
0.2600	7821	1906	24	Pass
0.2623	7609	1775	23	Pass
0.2646	7418	1640	22	Pass
0.2668	7208	1487	20	Pass

The development has an increase in flow durations from 8% of the 2 year flow to the 50 year flow

```
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
```

```
Wetlands Input Volume
Average Annual Volume (acft)
Series 1: 501 POC 1 Predeveloped flow
Series 2: 801 POC 1 Mitigated flow
Month Series 1 Series 2 Percent Pass/Fail
 Jan
        3.0585
                   2.9552
                              96.6
                                      Pass
Feb
        2.2266
                   2.0341
                              91.4
                                      Pass
Mar
        1.9492
                   1.7045
                              87.4
                                      Pass
        1.1121
                   0.9140
                              82.2
 Apr
                                      Fail
May
        0.6001
                   0.4072
                              67.8
                                      Fail
        0.4355
                   0.2428
                              55.8
 Jun
                                      Fail
 Jul
        0.3052
                   0.1242
                              40.7
                                      Fail
        0.2820
                   0.0887
 Aug
                              31.5
                                      Fail
        0.2945
                   0.1996
                              67.8
                                      Fail
 Sep
 Oct
        0.6426
                   0.5703
                              88.7
                                      Pass
        2.1452
                   2.3347
                             108.8
Nov
                                      Pass
 Dec
        2.6259
                   2.9422
                             112.0
                                      Pass
                 Series 2 Percent Pass/Fail
Day
      Series 1
        0.0825
                   0.0776
Jan1
                              94.1
                                      Pass
        0.0903
                   0.0798
                              88.3
   2
                                      Pass
   3
        0.0968
                   0.0823
                              85.0
                                      Pass
   4
        0.0997
                   0.0848
                              85.0
                                      Pass
   5
        0.1027
                   0.0890
                              86.7
                                      Pass
                   0.0916
   6
                              80.5
        0.1137
                                      Pass
   7
        0.1138
                   0.0975
                              85.7
                                      Pass
```
8	0.1067	0.1004	94.1	Pass
9	0.0983	0.1005	102.2	Pass
10	0.0895	0.1000	111.8	Pass
11	0.0963	0.1010	104.8	Pass
12	0.1089	0.1023	94.0	Pass
13	0.1122	0.1034	92.1	Pass
14	0 1072	0 1046	97 6	Dass
15	0.1072	0 1061	09 2	Dace
16	0.1001	0.1001	90.Z	Pass
10	0.0978	0.1055	107.7	Pass
1/	0.0963	0.1011	105.0	Pass
18	0.09/1	0.0991	102.1	Pass
19	0.0982	0.0988	100.6	Pass
20	0.0902	0.0985	109.2	Pass
21	0.0762	0.0936	123.0	Fail
22	0.0883	0.0918	103.9	Pass
23	0.1085	0.0925	85.3	Pass
24	0.1196	0.0970	81.1	Pass
25	0.1055	0.0993	94.1	Pass
26	0.0972	0.0998	102.7	Pass
27	0.0916	0.0977	106.6	Pass
28	0.0913	0.0945	103.4	Pass
29	0.0974	0.0940	96.5	Pass
30	0 0995	0 0954	95.8	Pass
31	0 1038	0 0969	93.0	Dace
Fob1	0.1050	0.0909	100 2	Dace
rebi	0.0952	0.0954	100.2	Pass
2	0.0841	0.0919	109.2	Pass
3	0.0779	0.0873	112.0	Pass
4	0.0649	0.0806	124.2	Fail
5	0.0645	0.0731	113.4	Pass
6	0.0735	0.0701	95.3	Pass
7	0.0642	0.0677	105.4	Pass
8	0.0665	0.0652	98.1	Pass
9	0.0628	0.0621	98.8	Pass
10	0.0603	0.0592	98.2	Pass
11	0.0701	0.0576	82.2	Pass
12	0.0797	0.0588	73.8	Fail
13	0.0807	0.0600	74.4	Fail
14	0.0850	0.0625	73.6	Fail
15	0.0950	0.0677	71.3	Fail
16	0.0909	0.0716	78.8	Fail
17	0.0831	0.0727	87.6	Pass
18	0 0896	0 0731	81 6	Pass
19	0 0829	0 0744	89.8	Dass
20	0.0025	0.0739	95.0	Dace
20	0.0668	0.0735	105 6	Dace
21	0.0008	0.0700	103.0	Pass
22	0.0721	0.0678	94.0 02 F	Pass
23	0.0824	0.0688	83.5	Pass
24	0.0870	0.0701	80.6	Pass
25	0.0772	0.0694	89.9	Pass
26	0.0809	0.0692	85.5	Pass
27	0.0816	0.0703	86.1	Pass
28	0.1052	0.1045	99.3	Pass
29	0.0762	0.0722	94.8	Pass
Mar1	0.0751	0.0716	95.3	Pass
2	0.0815	0.0698	85.7	Pass
3	0.0793	0.0699	88.2	Pass
4	0.0845	0.0696	82.4	Pass
5	0.0777	0.0690	88.7	Pass
6	0.0665	0.0676	101.7	Pass

7	0.0621	0.0657	105.8	Pass
8	0.0669	0.0640	95.6	Pass
9	0.0710	0.0633	89.1	Pass
10	0.0733	0.0614	83.8	Pass
11	0.0805	0.0633	78.6	Fail
12	0.0763	0.0650	85.1	Pass
13	0.0703	0.0635	90.3	Pass
14	0.0647	0.0602	93.0	Pass
15	0 0584	0 0564	96 7	Dass
16	0.0537	0.0526	97 9	Dace
17	0.0337	0.0320	97.9	Daga
10	0.0494	0.0455	90.9	Pass
10	0.0457	0.0456	99.7	Pass
19	0.0484	0.0440	90.9	Pass
20	0.0491	0.0428	87.1	Pass
21	0.0536	0.0424	/9.2	Fail
22	0.0562	0.0429	76.4	Fail
23	0.0575	0.0431	74.9	Fail
24	0.0559	0.0429	76.7	Fail
25	0.0526	0.0419	79.7	Fail
26	0.0513	0.0414	80.7	Pass
27	0.0510	0.0406	79.6	Fail
28	0.0564	0.0411	72.8	Fail
29	0.0545	0.0414	75.9	Fail
30	0.0497	0.0406	81.8	Pass
31	0.0468	0.0395	84.3	Pass
Apr1	0.0452	0.0384	85.0	Pass
- 2	0.0446	0.0374	84.0	Pass
3	0.0525	0.0364	69.2	Fail
4	0.0564	0.0370	65.6	Fail
5	0.0551	0.0390	70.8	Fail
6	0 0447	0 0397	88 7	Dage
7	0 0421	0.0399	94 9	Dass
, 8	0.0421	0.0305	88 5	Dace
۵ ۵	0.0433	0.0398	95 1	Dace
10	0.0419	0.0390	95.1	Dace
11	0.0397	0.0357	9J.7 101 0	Pass
10	0.0353	0.0357	101.0	Pass
12	0.0363	0.0336	92.6	Pass
13	0.0382	0.0324	85.0	Pass
14	0.03/9	0.0320	84.5	Pass
15	0.0360	0.0306	84.8	Pass
16	0.0373	0.0293	78.5	Fail
17	0.0322	0.0279	86.6	Pass
18	0.0338	0.0264	78.1	Fail
19	0.0342	0.0258	75.3	Fail
20	0.0291	0.0245	84.3	Pass
21	0.0268	0.0234	87.4	Pass
22	0.0256	0.0223	87.4	Pass
23	0.0259	0.0219	84.6	Pass
24	0.0259	0.0212	81.9	Pass
25	0.0268	0.0206	76.8	Fail
26	0.0288	0.0203	70.4	Fail
27	0.0301	0.0204	67.6	Fail
28	0.0290	0.0202	69.5	Fail
29	0.0279	0.0199	71.2	Fail
30	0.0251	0.0192	76.3	Fail
Mav1	0.0239	0.0186	77.7	Fail
2	0.0252	0.0182	72.4	Fail
3	0.0223	0.0175	78.6	Fail
4	0.0230	0.0168	73.2	Fail

5	0.0221	0.0163	73.7	Fail
6	0.0210	0.0157	74.8	Fail
7	0.0204	0.0154	75.7	Fail
8	0.0201	0.0148	73.7	Fail
9	0.0190	0.0142	74.6	Fail
10	0.0188	0.0136	72.3	Fail
11	0.0175	0.0130	74.2	Fail
12	0.0181	0.0126	69.5	Fail
13	0.0193	0.0124	64.4	Fail
14	0.0245	0.0128	52.3	Fail
15	0.0227	0.0132	57.9	Fail
16	0.0203	0.0129	63.5	Fail
17	0.0188	0.0125	66.7	Fail
18	0.0193	0.0123	63.7	Fail
19	0.0200	0.0126	62.8	Fail
20	0.0172	0.0120	69.6	Fail
21	0.0168	0.0115	68.4	Fail
22	0.0165	0.0111	67.2	Fail
23	0.0168	0.0108	64.4	Fail
24	0.0170	0.0104	61.3	Fail
25	0 0163	0 0101	62 1	Fail
26	0.0105	0 0097	65 4	Fail
20	0 0149	0 0095	64 3	Fail
28	0.0140	0.0093	61 3	Fail
20	0.0152	0.0095	59 6	Fail
30	0.0192	0.0091	50 5	Fail
21	0.0102	0.0092	30.3	Fall
J1 T 1	0.0194	0.0094	40.3	Fall
Juni	0.0208	0.0097	40.7	Fall
2	0.0192	0.0097	50.7	Fall
2	0.0163	0.0099	55.9	Fall
4	0.0162	0.0097	59.7	Fail
5	0.0146	0.0095	64.7 EQ 0	Fall
ю 7	0.0162	0.0094	58.2	Fail
,	0.0162	0.0092	50.0	Fall
8	0.0165	0.0091	54.9	Fail
10	0.0168	0.0091	54.5	Fall
10	0.0170	0.0093	54.5	Fall
11	0.01/2	0.0093	53.9	Fall
12	0.0148	0.0091	61.2	Fail
13	0.0137	0.008/	63.5	Fail
14	0.0132	0.0084	63.3	Fail
15	0.0124	0.0080	64.4	Fail
16	0.0122	0.0077	63.4	Fail
17	0.0122	0.0075	61.3	Fail
18	0.0137	0.0075	54.5	Fail
19	0.0129	0.0073	57.0	Fail
20	0.0122	0.0071	58.3	Fail
21	0.0120	0.0069	57.6	Fail
22	0.0118	0.0067	57.1	Fail
23	0.0126	0.0067	53.0	Fail
24	0.0131	0.0067	51.4	Fail
25	0.0120	0.0065	54.1	Fail
26	0.0117	0.0063	54.2	Fail
27	0.0116	0.0061	53.0	Fail
28	0.0130	0.0062	47.9	Fail
29	0.0118	0.0060	51.2	Fail
30	0.0122	0.0059	48.4	Fail
Jul1	0.0115	0.0057	49.8	Fail
2	0.0109	0.0055	50.6	Fail

3	0.0105	0.0053	50.1	Fail
4	0.0104	0.0051	49.0	Fail
5	0.0102	0.0049	48.1	Fail
6	0.0101	0.0047	46.5	Fail
7	0.0102	0.0046	45.0	Fail
8	0.0116	0.0047	40.1	Fail
9	0 0112	0 0046	41 6	Fail
10	0 0105	0 0045	43 1	Fail
11	0.0103	0.0043	40.7	Fail
10	0.0104	0.0044	42.7	Fall
12	0.0104	0.0044	42.3	Fall
13	0.0100	0.0043	42.4	Fail
14	0.0098	0.0041	42.1	Fail
15	0.0097	0.0040	41.6	Fail
16	0.0096	0.0039	41.1	Fail
17	0.0096	0.0039	40.4	Fail
18	0.0094	0.0037	39.6	Fail
19	0.0093	0.0036	38.6	Fail
20	0.0092	0.0035	37.6	Fail
21	0.0092	0.0034	36.7	Fail
22	0.0091	0.0032	35.7	Fail
23	0.0090	0.0031	34.6	Fail
24	0.0089	0.0030	33.6	Fail
25	0.0089	0.0029	32.8	Fail
26	0.0089	0.0029	32.2	Fail
27	0 0088	0 0027	31 3	Fail
28	0 0087	0 0026	30 4	Fail
20	0.0086	0.0025	20.4	Fail
29	0.0086	0.0025	29.4	Fall
20	0.0086	0.0024	20.5	Fall
31	0.0086	0.0024	28.1	Fail
Augi	0.0086	0.0024	27.8	Fail
2	0.0085	0.0024	27.7	Fail
3	0.0085	0.0023	27.5	Fail
4	0.0084	0.0023	27.2	Fail
5	0.0086	0.0023	26.7	Fail
6	0.0091	0.0024	26.2	Fail
7	0.0097	0.0025	25.4	Fail
8	0.0089	0.0024	27.3	Fail
9	0.0085	0.0024	27.9	Fail
10	0.0082	0.0023	27.8	Fail
11	0.0081	0.0023	27.7	Fail
12	0.0081	0.0022	27.9	Fail
13	0.0080	0.0022	27.8	Fail
14	0.0083	0.0022	26.6	Fail
15	0.0087	0.0023	26.3	Fail
16	0.0083	0.0023	27.8	Fail
17	0.0082	0.0023	28.2	Fail
18	0 0086	0 0024	28 0	Fail
19	0 0084	0 0025	29.8	Fail
20	0.0004	0.0025	30.9	Fail
20	0.0081	0.0023	30.0	Fall
21	0.0084	0.0027	32.2	Fall
22	0.0091	0.0029	J∠.U	rali Deil
23	0.0090	0.0031	34.9	rali
24	0.0113	0.0036	31.6	Fail
25	0.0129	0.0039	30.1	Fail
26	0.0115	0.0043	37.2	Fail
27	0.0106	0.0045	42.3	Fail
28	0.0102	0.0046	45.1	Fail
29	0.0110	0.0049	44.7	Fail
30	0.0095	0.0049	51.7	Fail

31	0.0087	0.0049	55.9	Fail
Sep1	0.0084	0.0049	58.4	Fail
2	0.0083	0.0049	59.1	Fail
3	0.0088	0.0050	56.6	Fail
4	0.0086	0.0050	57.7	Fail
5	0.0087	0.0050	57.5	Fail
6	0.0086	0.0050	58.9	Fail
7	0 0083	0 0050	60 4	Fail
, 0	0.0005	0.0050	54 Q	Fail
0	0.0098	0.0052	54.0	Fall
10	0.0101	0.0055	54.3	Fall
10	0.0122	0.0060	49.2	Fail
11	0.0097	0.0060	62.1	Fail
12	0.0092	0.0060	65.3	Fail
13	0.0086	0.0061	70.7	Fail
14	0.0086	0.0062	72.1	Fail
15	0.0086	0.0062	71.5	Fail
16	0.0094	0.0062	66.3	Fail
17	0.0115	0.0067	58.0	Fail
18	0.0121	0.0073	60.3	Fail
19	0.0106	0.0075	70.6	Fail
20	0.0113	0.0076	67.5	Fail
21	0.0114	0.0077	68.0	Fail
22	0 0163	0 0085	52 4	Fail
22	0.0105	0.0003	70 7	Fail
23	0.0101	0.0095	01 7	Parr
24	0.0108	0.0092	04.7	Pass
25	0.0091	0.0089	98.3	Pass
26	0.0082	0.0087	106.3	Pass
27	0.0086	0.0085	99.6	Pass
28	0.0085	0.0084	98.9	Pass
29	0.0087	0.0082	94.0	Pass
30	0.0084	0.0079	94.3	Pass
Oct1	0.0079	0.0077	97.3	Pass
2	0.0075	0.0075	100.6	Pass
3	0.0073	0.0074	102.4	Pass
4	0.0079	0.0073	92.3	Pass
5	0.0168	0.0081	48.1	Fail
6	0.0164	0.0093	56.8	Fail
7	0.0162	0.0109	67.2	Fail
8	0.0189	0.0126	66.5	Fail
9	0.0185	0.0135	72.8	Fail
10	0 0171	0 0141	82 5	Dage
11	0.0171	0.0141	101 7	Dace
12	0.0135		101.7	Dage
12	0.0133	0.0143	107.5	rass Teil
10	0.0113	0.0143	120.1	Fall
14	0.0117	0.0143	122.3	Fall
15	0.0108	0.0140	129.3	Fall
16	0.0141	0.0144	102.2	Pass
17	0.0156	0.0149	95.9	Pass
18	0.0187	0.0157	83.8	Pass
19	0.0306	0.0173	56.7	Fail
20	0.0436	0.0198	45.5	Fail
21	0.0329	0.0223	67.6	Fail
22	0.0261	0.0246	94.2	Pass
23	0.0258	0.0267	103.1	Pass
24	0.0323	0.0302	93.5	Pass
25	0.0346	0.0323	93.3	Pass
26	0.0344	0.0340	98.7	Pass
27	0.0304	0.0348	114 7	Pass
20	0 0202	0 0346	110 7	Daca
20	0.0292	0.0340	110.1	rass

29	0.0290	0.0351	121.2	Fail
30	0.0412	0.0360	87.3	Pass
31	0.0452	0.0386	85.5	Pass
Nov1	0.0447	0.0416	93.2	Pass
2	0.0454	0.0436	96.0	Pass
3	0.0506	0.0477	94.3	Pass
4	0.0411	0.0484	117.8	Pass
5	0.0489	0.0491	100.6	Pass
6	0.0608	0.0516	84.9	Pass
7	0.0569	0.0541	95.0	Pass
8	0.0575	0.0579	100.7	Pass
9	0.0633	0.0628	99.1	Pass
10	0.0746	0.0680	91.1	Pass
11	0.0714	0.0727	101.9	Pass
12	0.0683	0.0759	111.2	Pass
13	0.0806	0.0777	96.5	Pass
14	0.0657	0.0776	118.2	Pass
15	0.0567	0.0776	136.8	Fail
16	0.0604	0.0783	129.6	Fail
17	0.0614	0.0792	129.1	Fail
18	0.0755	0.0808	107.0	Pass
19	0.0915	0.0846	92.5	Pass
20	0.0889	0.0891	100.1	Pass
21	0.0873	0.0940	107.8	Pass
22	0.0951	0.0980	103.0	Pass
23	0.1262	0.1046	82.9	Pass
24	0.1209	0.1125	93.0	Pass
25	0.1016	0.1164	114.6	Pass
26	0.0833	0.1184	142.1	Fail
27	0.0680	0.1147	168.6	Fail
28	0.0709	0.1103	155.6	Fail
29	0.0825	0.1087	131.7	Fail
30	0.0844	0.1079	127.8	Fail
Dec1	0.0931	0.1062	114.2	Pass
2	0.1122	0.1060	94.5	Pass
3	0.1012	0.1049	103.7	Pass
4	0.0846	0.1048	123.8	Fail
5	0.0760	0.1037	136.3	Fail
6	0.0644	0.0994	154.3	Fail
7	0.0604	0.0932	154.2	Fail
8	0.0730	0.0884	121.2	Fail
9	0.0835	0.0876	104.9	Pass
10	0.0958	0.0906	94.5	Pass
11	0.0968	0.0952	98.3	Pass
12	0.0897	0.0964	107.4	Pass
13	0.0959	0.0992	103.4	Pass
14	0.1065	0.1037	97.4	Pass
15	0.0986	0.1051	106.7	Pass
16	0.0931	0.1050	112.8	Pass
17	0.0759	0.1018	134.1	Fail
10	0.0714	0.0972	136.1	Fall
19	0.0/92	0.0928	101 0	Pass
20	0.0919	0.0928	101.0	Pass
21	0.0862	0.0923	10/.1	Pass
22	0.0765	0.0898		Pass
23	0.0753	0.0859	112.0	Pass
24	0.0/26	0.0826	113.8	Pass
25	0.096/	0.0842	8/.0	Pass
26	0.1022	0.0898	87.9	Pass

27	0.0743	0.0898	120.8	Fail
28	0.0670	0.0853	127.3	Fail
29	0.0766	0.0824	107.7	Pass
30	0.0709	0.0783	110.4	Pass
31	0.0769	0.0761	98.9	Pass

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative	Percent
Water Quality Percent	Comment Treatment?	Needs	Through	Volume	Volume	Volume
Water Quality		Treatment	Facility	(ac-ft.)	Infiltratio	n Infiltrated
		(ac-ft)	(ac-ft)		Credit	
Trapezoidal Pond 1 POC	N	701.55			Ν	100.00
Trapezoidal Pond 1 POC	Ν	701.55			Ν	100.00
Total Volume Infiltrated		1403.09	0.00	0.00		100.00
0.00 0%	No Treat. Cr	edit				
Compliance with LID Standard	18					
Ι	Ouration Analy	sis Result = Pa	assed			

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

Appendix C Geotech Report

At the request of Chris Cramer, of Patrick Harron and Associates we have conducted a supplemental evaluation for stormwater infiltration at the proposed Boulevard Road residential development to be located at 2817 Boulevard Road SE in Olympia, Washington.

An existing wetland located in the base of a small, closed depression has been identified as a potential location for the disposal of stormwater. We understand that the depression is classified as an unregulated Class IV wetland and as a result, supplemental infiltration testing was requested for this area. On January 15, 2020, we completed a stormwater infiltration rate evaluation in general accordance with the 2016 Manual consisting of two modified Pilot Infiltration Tests (PITs). The PITs were performed within the depression at depths of 1 foot and 5 feet below the base.

The dimensions of PIT-1 were $4 \times 5 \times 1$ foot. PIT-2 was $4 \times 4 \times 5$ feet. The soil exposed in the base of the excavations consisted of brown silt which was consistent with our previous observations in the area.

Water was added to the excavations to maintain a water level of about 12 inches in each excavation and to saturate the underlying soils. We utilized a water truck provided by Kapa Construction as the source of the water. Following the soaking period, water flow to the excavations was stopped and the excavation was allowed to drain. A datalogging pressure transducer was placed in each excavation to record the depth of water as it drained. Graphs of water levels over time are shown in Figure 1, below. The initial infiltration rate was calculated using the change in water level over time.

We then applied the appropriate correction factors to the initial infiltration rate of 2.5 inches per hour as shown in Table 1, below. Our final design infiltration rate is 1.0 inches per hour.

Table 1.

Design Infiltration Rate Calculation

PIT	Initial Infiltration Rate (in./hr.)	Testing Methodology Correction Factor	Site Variability Correction Factor	Plugging Correction Factor	Design Infiltration Rate (in./hr.)
PIT-1	2.46	0.5	0.9	0.9	1.0
PIT-2	2.53	0.5	0.9	0.9	1.0

We trust this meets your current requirements. Please contact us if you have any questions regarding our testing.

August 2, 2018

Kapa Construction 8411 Old Highway 99 SE Tumwater, Washington 98501 Attn: Pawel Oberc

Proposal Geotechnical, Stormwater and Limited Environmental Investigation Proposed Boulevard Road Residential Development 2817 Boulevard Road SE Olympia, Washington Project No. 1065-001-01

INTRODUCTION

Insight Geologic, Inc. is pleased to provide our report regarding our investigation of subsurface conditions for your proposed residential development to be located at 2817 Boulevard Road SE in Olympia, Washington. The location of the site is shown relative to surrounding physical features in the Vicinity Map, Figure 1. We understand that you are proposing a 16-lot residential development, along with appurtenant roadway, parking and driveway areas. Stormwater runoff will be routed to individual lot drywells for disposal. The site is currently undeveloped and vegetated with low-growing plants such as scotch broom and black berry, along with scattered alder, maple, and fir trees. A steep slope is located on the western portion of the property, which may qualify as a landslide hazard in accordance with the City of Olympia Critical Area Ordinance Chapter 18.32. Further, it is our understanding the City of Olympia Site Plan Review Committee has requested a limited environmental screening due to historic car-storage activities at the site.

Our services were performed in general accordance with our proposal dated June 25, 2018 and authorized on July 18, 2018.

SCOPE OF SERVICES

The purpose of our services was to evaluate subsurface conditions as they pertain to stormwater infiltration and geotechnical parameters. We proposed to conduct our stormwater services in general accordance with the guidelines outlined in the City of Olympia's 2016 Drainage Design and Erosion Control Manual (DDECM). Our specific scope of services included the following tasks:

Excavated 10 exploratory test pits on the site using a small, track-mounted excavator. The test
pits were excavated to a depth of 8 to 9 feet below ground surface (bgs) to evaluate shallow soils
for the purposes of developing geotechnical recommendations for the project, as well as for
stormwater infiltration from roadways and from individual residences. The test pits were backfilled
using the excavated soil at the end of the field day.

- 2. Logged the soils encountered in the test pits in general accordance with ASTM D2487-06.
- 3. Conducted grain-size analyses on six (6) soil samples collected from the test pits. The grain-size analyses were used to derive design infiltration rates for the stormwater system in accordance with the DDECM.
- 4. Collected representative soil samples from the area of suspected vehicle storage for environmental analysis. Samples were collected into laboratory-supplied glass containers appropriate for the requested analyses.
- Provided for the analysis of soil samples for the presence of petroleum hydrocarbons using Ecology method NWTPH-HCID with quantitative follow-up using NWTPH-Gx, Dx, and for MTCA 5 Metals using EPA method 7000/8000 series.
- 6. Evaluated the results of the laboratory analyses with respect to current cleanup levels as published by the Washington State Department of Ecology for unrestricted residential land use.
- 7. Prepared a report summarizing our field activities and containing recommendations for site grading, use of native material as structural fill, soil values for retaining wall design, seismic design parameters, and steep slope and landslide hazards, along with design infiltration rate for the proposed stormwater infiltration system. In addition, we have provided a summary of our limited environmental screening activities.

FINDINGS

Surface Conditions

The project site is situated at an elevation of between 160 and 204 feet above mean sea level (MSL). The site is bounded by Boulevard Road SE to the east, residential properties to the south, undeveloped land to the west, and a church to the north. The site is currently undeveloped and vegetated with low-growing plants, such as scotch broom and blackberry, along with scattered alder, maple, and fir trees. A moderate slope is located on the western portion of the property, leading down to a wetland area within a glacial kettle.

Steep Slope Assessment

We conducted a site reconnaissance of the slope descending approximately 30 feet to the base of the glacial kettle and the associated wetlands. Based on multiple measurements made using a hand-held clinometer, the steepest slopes are approximately 26 percent along the east side of the kettle formation.

No evidence of bedding planes or geologic contact zones were noted during our site reconnaissance. We did not observe the presence of groundwater seeps but did observe the presence of hydric vegetation within the wetland at the base of the slope, indicating the presence of groundwater. We did not observe the presence of historical soil failures or landslide features such as butt-bowed trees, hummocky or back-tilted topography, or ponded drainage on the slope.

Based on our evaluation of the slopes on the site, it is our opinion that no portion of the slope represents a landslide hazard area as per the City of Olympia Critical Area Ordinance. The slope does not exceed a slope of 40 percent and the site does not contain interbedded geology with groundwater seeps along the slope. As a result, no buffer is required.

Geology

Based on our review of available published geologic maps, Vashon age glacial recessional outwash deposits underlie the project site and surrounding area. The outwash material is described as fine to medium sand with few fines. This material was deposited around the margins of glacially-formed kettle lakes, during the waning stages of the most recent glacial period in the Puget Sound lowlands; the Fraser Stade of the Vashon glaciation. The outwash is typically found in a loose to moderately dense condition and is not glacially consolidated.

Subsurface Explorations

We explored subsurface conditions at the site on July 18, 2018 by excavating 10 test pits in the locations as shown on the Site Plan, Figure 2. The test pits were excavated using a track-mounted excavator owned and operated by Kapa Construction. A geologist from Insight Geologic monitored the explorations and maintained a log of the conditions encountered. The test pits were completed between 8 and 9 feet bgs. The soils were visually classified in general accordance with the system described in ASTM D2487-06. The exploration logs are contained in Attachment A.

Soil Conditions

Soil conditions encountered were generally consistent across the site. Underlying approximately 6 inches of sod or forest duff, we encountered approximately 2 to 3 feet of orange-brown silt to silt with sand (ML) in a soft and moist condition. Underlying this upper unit, soils graded to a brown color, which extended to the base of the test pits at 8 to 9 feet bgs. One exception to this description was encountered in test pit TP-10, excavated near the base of the kettle formation. Soils in TP-10 graded to a sandy silt at a depth of 6.5 feet bgs.

The surficial soils encountered are generally consistent with Giles silt loam, which is mapped for the eastern half of the site. These soils are generally formed from volcanic ash and glacial outwash and generally have restrictive layers occurring at depths greater than 7 feet below grade, according to the U.S. Department of Agriculture Soil Survey. Soils on the west half of the site are mapped as Yelm fine sandy loam, however soils encountered in this area had a significantly higher silt content and more closely resemble a silt loam.

Groundwater Conditions

Groundwater was encountered in test pit TP-10, excavated near the base of the glacial kettle, at a depth of 8 feet bgs or an approximate elevation of 152 feet MSL.

Laboratory Testing

We selected 12 soil samples for laboratory testing. Six of the samples obtained were sent to an outside laboratory, Libby Environmental, Inc. of Olympia, Washington, for petroleum hydrocarbon and MTCA 5 Metals analyses by NWTPH-HCID and EPA Method 7000/8000 series, respectively. The remaining six soil samples were analyzed in general accordance with ASTM D422 to define soil class, obtain geotechnical parameters and develop stormwater infiltration rates. Our geotechnical laboratory test results are presented in Attachment B.

ENVIRONMENTAL SCREENING

Six soil samples were delivered to Libby Environmental, Inc. of Olympia, Washington, for analysis of

petroleum hydrocarbon and MTCA 5 Metals using NWTPH-HCID and EPA Method 7000/8000 series methods, respectively.

Petroleum hydrocarbons were not detected within any of the six samples submitted for analysis. Lead and chromium were detected in each of the samples at concentrations less than the corresponding MTCA Method A cleanup level of 250 mg/kg and 2,000 mg/kg, respectively. A summary of the analytical data is presented in Table 1. Laboratory analytical reports are contained in Attachment B. The sampling locations are shown on the Site Plan, Figure 2.

Sample Name	Sample Date	Petroleum Hydrocarbons	Lead (mg/kg)	Chromium (mg/kg)
S-1	7/18/2018	Not Detected	40	11
S-2	7/18/2018	Not Detected	73	25
S-3	7/18/2018	Not Detected	42	15
S-4	7/18/2018	Not Detected	64	8.6
S-5	7/18/2018	Not Detected	57	19
S-6	7/18/2018	Not Detected	16	26
MTCA Method A Cleanup Level (mg/kg)			250	2,000

Table 1. Summary of Environmental Screening

STORMWATER INFILTRATION

We completed a stormwater infiltration rate evaluation in general accordance with the 2016 City of Olympia Drainage Design and Erosion Control Manual (2016 Manual). The 2016 Manual uses a detailed method that utilizes the relationship between the D_{10} , D_{60} , and D_{90} results of the ASTM grainsize distribution analyses, along with site specific correction factors to estimate long-term design infiltration rates.

Based on our gradation analyses, we estimate that the long-term design infiltration rate (F_{design}) for the proposed stormwater infiltration is approximately 0.1 inches per hour, after applying the appropriate correction factors. Our calculations assume that the stormwater infiltration will occur at a depth of at least 3 feet bgs. We further assumed that winter groundwater rises to within 40 feet of ground surface, or at about the elevation of the bottom of the kettle. Changes to these infiltration rates are possible depending on soil conditions at deeper depths and further determination of depth to groundwater.

Exploration	Unit	Depth Range (feet)	D_{10} Value	D₀₀ Value	D ₉₀ Value	Long Term Design Infiltration Rate (Inches per hour)
TP-3	ML	0.5 - 3.0	0.0	0.0	0.14	0.1
TP-3	ML	3.0 - 8.0	0.0	0.0	0.14	0.13
TP-5	ML	0.5 - 3.0	0.0	0.0	0.16	0.1
TP-5	ML	3.0 - 8.0	0.0	0.0	0.1	0.06
TP-10	ML	4.0 - 6.5	0.0	0.0	0.13	0.05
TP-10	ML	6.5 - 8.0	0.0	0.08	0.15	0.1

 Table 2. Design Infiltration Rates – Detailed Method

SEISMIC DESIGN CONSIDERATIONS

General

We understand that seismic design will likely be performed using the 2015 IBC standards. The following parameters may be used in computing seismic base shear forces:

Table 3. 2015 IBC Seismic Design Parameters

Spectral Response Accel. at Short Periods (SS) = 1.32
Spectral Response Accel. at 1 Second Periods (S1) = 0.54
Site Class = D
Site Coefficient (FA) = 1.0
Site Coefficient (FV) = 1.5

A full report for the seismic design parameters is presented in Attachment C.

Ground Rupture

Because of the location of the site with respect to the nearest known active crustal faults, and the presence of a relatively thick layer of glacial outwash deposits, it is our opinion that the risk of ground rupture at the site due to surface faulting is low.

Soil Liquefaction

Liquefaction refers to a condition where vibration or shaking of the ground, usually from earthquake forces, results in the development of excess pore water pressures in saturated soils, and a subsequent loss of stiffness in the soil occurs. Liquefaction also causes a temporary reduction of soil shear strength and bearing capacity, which can cause settlement of the ground surface above the liquefied soil layers. In general, soils that are most susceptible to liquefaction include saturated, loose to medium dense, clean to silty sands and non-plastic silts within 50 feet of ground surface.

Based on our review of the *Liquefaction Susceptibility Map of Thurston County (Palmer, 2004)*, the project site is identified to have a low to moderate potential risk for soil liquefaction. Based on our experience with detailed seismic studies in the Olympia area, including areas that are mapped within the same recessional outwash soil deposits as the project site, we concur with the reviewed map. It is our opinion that there is a moderate risk for soil liquefaction at the site. Additional investigation and evaluation would be needed to further define this risk.

Seismic Compression

Seismic compression is defined as the accrual of contractive volumetric strains in unsaturated soils during strong shaking from earthquakes (Stewart et al., 2004). Loose to medium dense clean sands and non-plastic silts are particularly prone to seismic compression settlement. Seismic compression settlement is most prevalent on slopes, but it can also occur on flat ground. It is our opinion that the upper 9 feet of the soil profile at the site has a moderate risk for seismic compression settlement.

Seismic Settlement Discussion

Based on the materials encountered in our explorations, it is our preliminary opinion that seismic settlements (liquefaction-induced plus seismic compression) could potentially total a few inches at the site as the result of an IBC design level earthquake. We are available upon request to perform deep subsurface explorations and detailed seismic settlement estimates during the design phase.

Seismic Slope Instability

The maximum inclination of the slope on the western portion of the site is about 26 percent and we did not observe signs of slope instability during our site work. In our opinion, there is a low to moderate risk of seismic slope instability at the project site under current conditions. If slope instability due to a seismic event did occur, it could result in damage to the residential structures or infrastructure depending on final site layout and proximity to the slope edge.

Lateral Spreading

Lateral spreading involves the lateral displacement of surficial blocks of non-liquefied soil when an underlying soil layer liquefies. Lateral spreading generally develops in areas where sloping ground or large grade changes are present. Based on our limited understanding of the subsurface conditions along the northeastern site slope, it is our opinion that there could be a low to moderate risk for the development of lateral spreading as a result of an IBC design level earthquake.

Seismic Slope Deformation Discussion

In our experience, it is unlikely that the potential slope deformations described above (seismic compression or lateral spreading) would be mitigated for in the typical design of a residential buildings. If necessary, we are available to perform detailed slope stability/lateral spreading evaluations to include deep borings and/or CPT soundings at the site.

CONCLUSIONS AND RECOMMENDATIONS

General

Based on the results of our review, subsurface explorations and engineering analyses, it is our opinion that the proposed development is feasible from a geotechnical standpoint. We recommend that the proposed structures be supported on shallow concrete foundations that are designed using an allowable soil bearing capacity of 1,500 pounds per square foot (psf). If higher loads are anticipated, compacted stone columns, small diameter pilings, or a robust structural fill section may be used to increase the bearing strength of the soils beneath the building.

The soils encountered in our explorations are typically in a soft condition near ground surface. To limit the potential for structure settlement, we recommend that shallow foundations and slabs-on-grade be established on a minimum 1-foot thick layer of structural fill. Depending on final grading plans and the time of year earthwork is performed; it could be practical to reuse the on-site soils granular soils as structural fill under the foundations/slabs if adequate compaction can be achieved. Due to the fine nature of the soils, the use of a sheeps-foot roller will be critical to obtaining proper compaction. Smooth-drum, vibratory rollers are not recommended.

Stormwater infiltration at the site is not feasible. Soils located near the surface can effectively be considered impermeable with estimated infiltration rates of 0.05 to 0.13 inches per hour. We recommend that stormwater be collected and routed to a designed stormwater system. Soils with higher infiltration rates may exist on-site but would take further determination of soil conditions at depth and depth to groundwater.

Earthwork

General

We anticipate that site development earthwork will include clearing and stripping of existing vegetation and asphalt, preparing subgrades, excavating for utility trenches, and placing and compacting structural fill. We expect that the majority of site grading can be accomplished with conventional earthmoving equipment in proper working order.

Our explorations did not encounter appreciable amounts of debris or unsuitable soils associated with past site development. Still, it is possible that concrete slabs, abandoned utility lines or other development features from the existing onsite development could be encountered during construction. The contractor should be prepared to deal with these conditions during site grading activities.

Clearing and Stripping

Clearing and stripping should consist of removing surface and subsurface deleterious materials including sod/topsoil, trees, brush, debris and other unsuitable loose/soft or organic materials. Stripping and clearing should extend at least 5 feet beyond all structures and areas to receive structural fill.

We estimate that a stripping depth of about 6 inches will be required to remove the vegetation encountered in our explorations. Deeper stripping depths may be required if additional unsuitable soils are exposed during stripping operations.

Subgrade Preparation

After stripping and excavating to the proposed subgrade elevation, and before placing structural fill or foundation concrete, the exposed subgrade should be thoroughly compacted to a firm and unyielding condition. The exposed subgrade should then be proof-rolled using loaded, rubber-tired heavy equipment. We recommend that Insight Geologic be retained to observe the proof-rolling prior to placement of structural fill or foundation concrete. Areas of limited access that cannot be proof-rolled can be evaluated using a steel probe rod. If soft or otherwise unsuitable areas are revealed during proof-rolling or probing, that cannot be compacted to a stable and uniformly firm condition, we generally recommend that: 1) the subgrade soils be scarified (e.g., with a ripper or farmer's disc), aerated and recompacted; or 2) the unsuitable soils be over-excavated and replaced with structural fill. In areas selected for infiltration of roof runoff or permeable pavement, the subgrade should be either non-compacted or minimally compacted to maximize infiltration into the subsurface.

Temporary Excavations and Groundwater Handling

Excavations deeper than 4 feet should be shored or laid back at a stable slope if workers are required to enter. Shoring and temporary slope inclinations must conform to the provisions of Title 296 Washington Administrative Code (WAC), Part N, "Excavation, Trenching and Shoring." Regardless of

the soil type encountered in the excavation, shoring, trench boxes or sloped sidewalls were required under the Washington Industrial Safety and Health Act (WISHA). The contract documents should specify that the contractor is responsible for selecting excavation and dewatering methods, monitoring the excavations for safety and providing shoring, as required, to protect personnel and structures.

In general, temporary cut slopes should be inclined no steeper than about 1.5H:1V (horizontal: vertical). This guideline assumes that all surface loads are kept at a minimum distance of at least one-half the depth of the cut away from the top of the slope, and that significant seepage is not present on the slope face. Flatter cut slopes were necessary where significant seepage occurs or if large voids are created during excavation. Some sloughing and raveling of cut slopes should be expected. Temporary covering with heavy plastic sheeting should be used to protect slopes during periods of wet weather.

We anticipate that if perched groundwater is encountered during construction it can be handled adequately with sumps, pumps, and/or diversion ditches. Groundwater handling needs will generally be lower during the late summer and early fall months. We recommend that the contractor performing the work be made responsible for controlling and collecting groundwater encountered during construction.

Permanent Slopes

Permanent slopes will be utilized for the proposed project on the western side of the parcel. Where permanent slopes are necessary, we recommend the slopes be constructed at a maximum inclination of 2H:1V. Where 2H:1V permanent slopes are not feasible, protective facings and/or retaining structures should be considered.

To achieve uniform compaction, we recommend that fill slopes be overbuilt and subsequently cut back to expose well-compacted fill. Fill placement on slopes should be benched into the slope face and include keyways. The configuration of the bench and keyway depends on the equipment being used.

Bench excavations should be level and extend into the slope face. We recommend that a vertical cut of about 3 feet be maintained for benched excavations. Keyways should be about 1-1/2 times the width of the equipment used for grading or compaction.

Erosion Control

We anticipate that erosion control measures such as silt fences, straw bales and sand bags will generally be adequate during development. Temporary erosion control should be provided during construction activities and until permanent erosion control measures are functional. Surface water runoff should be properly contained and channeled using drainage ditches, berms, swales, and tightlines, and should not discharge onto sloped areas. Any disturbed sloped areas should be protected with a temporary covering until new vegetation can take effect. Jute or coconut fiber matting, excelsior matting or clear plastic sheeting is suitable for this purpose. Graded or disturbed slopes should be tracked in-place with the equipment running perpendicular to the slope contours so that the track marks provide a texture to help resist erosion. Ultimately, erosion control measures should be in accordance with local regulations and should be clearly described on project plans.

Wet Weather Earthwork

The majority of the near surface soils are predominantly silts. When the moisture content of the soil is more than a few percent above the optimum moisture content, the soil will become unstable and it may become difficult or impossible to meet the required compaction criteria. Disturbance of near surface soils should be expected if earthwork is completed during periods of wet weather.

The wet weather season in this area generally begins in October and continues through May. However, periods of wet weather may occur during any month of the year. If wet weather earthwork is unavoidable, we recommend that:

- The ground surface is sloped so that surface water is collected and directed away from the work area to an approved collection/dispersion point.
- Earthwork activities not take place during periods of heavy precipitation.
- Slopes with exposed soil be covered with plastic sheeting or otherwise protected from erosion.
- Measures are taken to prevent on-site soil and soil stockpiles from becoming wet or unstable. Sealing the surficial soil by rolling with a smooth-drum roller prior to periods of precipitation should reduce the extent that the soil becomes wet or unstable.
- Construction traffic is restricted to specific areas of the site, preferably areas that are surfaced with materials not susceptible to wet weather disturbance.
- A minimum 1-foot thick layer of 4- to 6-inch quarry spalls is used in high traffic areas of the site to protect the subgrade soil from disturbance.
- Contingencies are included in the project schedule and budget to allow for the above elements.

Structural Fill Materials

General

Material used for structural fill should be free of debris, organic material and rock fragments larger than 3 inches. The workability of material for use as structural fill will depend on the gradation and moisture content of the soil. As the amount of fines increases, soil becomes increasingly more sensitive to small changes in moisture content and adequate compaction becomes more difficult or impossible to achieve.

On-Site Soil

We anticipate that the majority of the on-site soils encountered during construction will consist of silt located at or near the surface of the site. It is our opinion that this material is a suitable source for structural fill during a limited portion of the year due to the fines content and moisture sensitivity. We anticipate that thin lifts (6-inches or less) will likely be needed to obtain structural fill compaction specifications on native soils. Proper moisture conditioning will be critical for use of these soils. On-site materials used as structural fill should be free of roots, organic matter and other deleterious materials and particles larger than 3 inches in diameter.

Select Granular Fill

Select granular fill should consist of imported, well-graded sand and gravel or crushed rock with a maximum particle size of 3 inches and less than 5 percent passing a U.S. Standard No. 200 sieve

based on the minus $\frac{3}{4}$ -inch fraction. Organic matter, debris or other deleterious material should not be present. In our experience, "gravel borrow" as described in Section 9-03.14(1) of the 2018 WSDOT Standard Specifications is typically a suitable source for select granular fill during periods of wet weather, provided that the percent passing a U.S. Standard No. 200 sieve is less than 5 percent based on the minus $\frac{3}{4}$ -inch fraction.

Structural Fill Placement and Compaction

General

Structural fill should be placed on an approved subgrade that consists of uniformly firm and unyielding inorganic native soils or compacted structural fill. Structural fill should be compacted at a moisture content near optimum. The optimum moisture content varies with the soil gradation and should be evaluated during construction.

Structural fill should be placed in uniform, horizontal lifts and uniformly densified with a sheep's-foot vibratory roller. A sheep's-foot vibratory roller is better suited to compact silty soils than a traditional smooth-drum vibratory roller. The maximum lift thickness will vary depending on the material and compaction equipment used, but should generally not exceed the loose thicknesses provided on Table 4. Structural fill materials should be compacted in accordance with the compaction criteria provided in Table 5.

Compaction Equipment	Recommended Uncompacted Fill Thickness (inches)		
	Granular Materials Maximum Particle Size ≤ 1 1/2 inch	Granular Materials Maximum Particle Size > 1 1/2 inch	
Hand Tools (Plate Compactors and Jumping Jacks)	4 – 8	Not Recommended	
Rubber-tire Equipment	10 – 12	6 – 8	
Light Roller	10 – 12	8 – 10	
Heavy Roller	12 – 18	12 – 16	
Hoe Pack Equipment	18 – 24	12 – 16	

Table 4. Recommended Uncompacted Lift Thickness

Note: The above table is intended to serve as a guideline and should not be included in the project specifications.

Table 5. Recommended Compaction Criteria in Structural Fill Zones

Fill Type	Percent Maximum Dry Density Determined by ASTM Test Method D 1557 at ±3% of Optimum Moisture			
	0 to 2 Feet Below Subgrade	> 2 Feet Below Subgrade	Pipe Zone	
Imported or On-site Granular, Maximum Particle Size < 1-1/4-inch	95	95		
Imported or On-site Granular, Maximum Particle Size >1-1/4-inch	N/A (Proof-roll)	N/A (Proof-roll)		
Trench Backfill ¹	95	92	90	

Note: ¹Trench backfill above the pipe zone in nonstructural areas should be compacted to at least 85 percent.

Shallow Foundation Support

General

We recommend that proposed structures be founded on continuous wall or isolated column footings, bearing on a minimum 1-foot thick over-excavation and replacement with compacted structural fill. The structural fill zone should extend to a horizontal distance equal to the over-excavation depth on each side of the footing. The actual over-excavation depth will vary, depending on the conditions encountered.

We recommend that an experienced geotechnical owner-representative observe the foundation surfaces before over-excavation, and before placing structural fill in over-excavations. This representative should confirm that adequate bearing surfaces have been prepared and that the soil conditions are as anticipated. Unsuitable foundation bearing soils should be recompacted or removed and replaced with compacted structural fill, as recommended by the geotechnical engineer.

Bearing Capacity and Footing Dimensions

We recommend an allowable soil bearing pressure of 1,500 psf for shallow foundations that are supported as recommended. This allowable bearing pressure applies to long-term dead and live loads exclusive of the weight of the footing and any overlying backfill. The allowable soil bearing pressure can be increased by one-third when considering total loads, including transient loads such as those induced by wind and seismic forces.

We recommend a minimum width of 18 inches for continuous wall footings and 2 feet for isolated column footings. For settlement considerations, we have assumed a maximum width of 4 feet for continuous wall footings and 6 feet for isolated column footings.

Perimeter footings should be embedded at least 12 inches below the lowest adjacent grade where the ground is flat. Interior footings should be embedded a minimum of 6 inches below the nearest adjacent grade.

Settlement

We estimate that total settlement of footings that are designed and constructed as recommended should be less than 1 inch. We estimate that differential settlements should be ½ inch or less between comparably loaded isolated footings or along 50 feet of continuous footing. We anticipate that the settlement will occur essentially as loads are applied during construction.

Lateral Load Resistance

Lateral loads on shallow foundation elements may be resisted by passive resistance on the sides of footings and by friction on the base of footings. Passive resistance may be estimated using an equivalent fluid density of 200 pounds per cubic foot (pcf), assuming that the footings are backfilled with structural fill. Frictional resistance may be estimated using 0.2 for the coefficient of base friction.

The lateral resistance values provided above incorporate a factor of safety of 1.5. The passive earth pressure and friction components can be combined, provided that the passive component does not exceed two-thirds of the total. The top foot of soil should be neglected when calculating passive resistance, unless the foundation perimeter area is covered by a slab-on-grade or pavement.

Slabs-On-Grade

Slabs-on-grade should be established on a minimum 1-foot thick section of structural fill extending to an approved bearing surface. A modulus of vertical subgrade reaction (subgrade modulus) can be used to design slabs-on-grade. The subgrade modulus varies based on the dimensions of the slab and the magnitude of applied loads on the slab surface; slabs with larger dimensions and loads are influenced by soils to a greater depth. We recommend a modulus value of 125 pounds per cubic inch (pci) for design of on-grade floor slabs with floor loads up to 500 psf. We are available to provide alternate subgrade modulus recommendations during design, based on specific loading information.

We recommend that slabs-on-grade in interior spaces be underlain by a minimum 4-inch thick capillary break layer to reduce the potential for moisture migration into the slab. The capillary break material should consist of a well-graded sand and gravel or crushed rock containing less than 5 percent fines based on the fraction passing the ³/₄-inch sieve. The 4-inch thick capillary break layer can be included when calculating the minimum 1-foot thick structural fill section beneath the slab.

If dry slabs are required (e.g., where adhesives are used to anchor carpet or tile to the slab), a waterproofing liner should be placed below the slab to act as a vapor barrier.

Subsurface Drainage

It is our opinion that foundation footing drains and underslab drains are likely necessary for the proposed structure. The site soils consisting of silt are generally poorly draining. Footing drains should be routed to existing on-site or planned storm drainage. Drains for surface water, such as downspout and area drains, should not be connected to the footing drain system.

Conventional Retaining Walls

General

The following sections provide general guidelines for retaining wall design on this site. We should be contacted during the design phase to review retaining wall plans and provide supplemental recommendations, if needed.

Drainage

Positive drainage is imperative behind any retaining structure. This can be accomplished by using a zone of free-draining material behind the wall with perforated pipes to collect water seepage. The drainage material should consist of coarse sand and gravel containing less than 5 percent fines based on the fraction of material passing the 3/4-inch sieve. The wall drainage zone should extend horizontally at least 12 inches from the back of the wall. If a stacked block wall is constructed, we recommend that a barrier such as a non-woven geotextile filter fabric be placed against the back of the wall to prevent loss of the drainage material through the wall joints.

A perforated smooth-walled rigid PVC pipe, having a minimum diameter of 4 inches, should be placed at the bottom of the drainage zone along the entire length of the wall. Drainpipes should discharge to a tightline leading to an appropriate collection and disposal system. An adequate number of cleanouts should be incorporated into the design of the drains in order to provide access for regular maintenance.

Roof downspouts, perimeter drains or other types of drainage systems should not be connected to retaining wall drain systems.

Design Parameters

We recommend an active lateral earth pressure of 29 pcf for a level backfill condition. This assumes that the top of the wall is not structurally restrained and is free to rotate. For restrained walls that are fixed against rotation (at-rest condition), an equivalent fluid density of 39 pcf can be used for the level backfill condition. For seismic conditions, we recommend a uniform lateral pressure of 14H psf (where H is the height of the wall) be added to the lateral pressures. This seismic pressure assumes a peak ground acceleration of 0.32 g. Note that if the retaining system is designed as a braced system but is expected to yield a small amount during a seismic event, the active earth pressure condition may be assumed and combined with the seismic surcharge.

The recommended earth pressure values do not include the effects of surcharges from surface loads or structures. If vehicles will be operated within one-half the height of the wall, a traffic surcharge should be added to the wall pressure. The traffic surcharge can be approximated by the equivalent weight of an additional 2 feet of backfill behind the wall. Other surcharge loads, such as construction equipment, staging areas and stockpiled fill, should be considered on a case-by-case basis.

DOCUMENT REVIEW AND CONSTRUCTION OBSERVATION

We recommend that we be retained to review the portions of the plans and specifications that pertain to earthwork construction and stormwater infiltration. We recommend that monitoring, testing and consultation be performed during construction to confirm that the conditions encountered are consistent with our explorations and our stated design assumptions. Insight Geologic would be pleased to provide these services upon request.

REFERENCES

International Code Council, "International Building Code", 2015.

- Seismic Compression of As-compacted Fill Soils with Variable Levels of Fines Content and Fines *Plasticity*, Department of Civil and Environmental Engineering, University of California, Los Angeles, July 2004.
- Washington State Department of Transportation (WSDOT), Standard Specifications for Road, Bridge and Municipal Construction Manual, 2018.

LIMITATIONS

We have prepared this geotechnical, stormwater and limited environmental investigation report for the exclusive use of Kapa Construction and their authorized agents for the proposed residential development project to be located at 2817 Boulevard Road SE in Olympia, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, expressed or implied, should be understood.

Please refer to Attachment D titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

_____ (◊) _____

We appreciate the opportunity to be of service to you on this project. Please contact us if you have questions or require additional information.

Respectfully Submitted, INSIGHT GEOLOGIC, INC.

William E. Halbert, L.E.G., L.HG. Principal

Attachments

FIGURES

LACEY, WASHINGTON 7.5 MINUTE QUADRANGLE Year 1994

2817 BOULEVARD ROAD SE

OLYMPIA, WASHINGTON

Figure 1 Vicinity Map

LEGEND:

⊕ S-1 ₽ TP-1

APPROXIMATE SAMPLE LOCATION APPROXIMATE TEST PIT LOCATION APPROXIMATE PROJECT BOUNDARY

SCALE" 1" = 100'

Figure 2 Site Plan

OLYMPIA, WASHINGTON

2817 BOULEVARD ROAD SE

ATTACHMENT A EXPLORATION LOGS

MAJOR DIVISIONS			SYMBOLS		GROUP NAME
	GRAVEL			GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COARSE GRAINED SOILS	GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	<5% FINES		GP	POORLY GRADED GRAVEL
		GRAVEL WITH FINES >12% FINES		GM	SILTY GRAVEL
				GC	CLAYEY GRAVEL
MORE THAN 50%	SAND AND SANDY SOILS	CLEAN SAND <5% FINES		SW	WELL-GRADED SAND, FINE TO COARSE SAND
RETAINED ON NO. 200 SIEVE				SP	POORLY GRADED SAND
	MORE THAN 50% OF COARSE FRACTION	SAND WITH FINES >12% FINES		SM	SILTY SAND
	PASSING NO. 4 SIEVE			SC	CLAYEY SAND
FINE GRAINED SOILS	SILTS AND CLAYS	INORGANIC		ML	SILT
				CL	CLAY
	LIQUID LIMIT LESS THAN 50	ORGANIC		OL	ORGANIC SILT, ORGANIC CLAY
MORE THAN 50% PASSING NO. 200 SIEVE	SILTS AND CLAYS	INORGANIC		МН	SILT OF HIGH PLASTICITY, ELASTIC SILT
				СН	CLAY OF HIGH PLASTICITY, FAT CLAY
	LIQUID LIMIT 50 OR MORE	ORGANIC		ОН	ORGANIC CLAY, ORGANIC SILT
HIGHLY ORGANIC SOILS				PT	PEAT

WET - VISIBLE FREE WATER OR SATURATED, USUALLY SOIL IS OBTAINED BELOW WATER TABLE

SOIL CLASSIFICATION CHART

ADDITIONAL MATERIAL SYMBOLS

SYMBOLS		TYPICAL DESCRIPTION	
	сс	CEMENT CONCRETE	
	AC	ASPHALT CONCRETE	
	CR	CRUSHED ROCK / QUARRY SPALLS	
\sim	TS	TOPSOIL/SOD/DUFF	

GROUNDWATER EXPLORATION SYMBOLS

- ∑ MEASURED GROUNDWATER LEVEL IN EXPLORATION, WELL, OR PIEZOMETER
- GROUNDWATER OBSERVED AT TIME OF EXPLORATION
- FIND PERCHED WATER OBSERVED AT TIME OF EXPLORATION
- MEASURED FREE PRODUCT IN WELL OR PIEZOMETER

STRATIGRAPHIC CONTACT

- APPROXIMATE CONTACT BETWEEN SOIL STRATA OR GEOLOGIC UNIT
- --- APPROXIMATE LOCATION OF SOIL STRATA CHANGE WITHIN GEOLOGIC SOIL UNIT
- APPROXIMATE GRADUAL CHANGE BETWEEN SOIL STRATA OR GEOLOGIC SOIL UNIT
- APPROXIMATE GRADUAL CHANGE OF SOIL STRATA WITHIN GEOLOGIC SOIL UNIT

LABORATORY / FIELD TEST CLASSIFICATIONS

- %F PERECENT FINES AL ATTERBERG LIMITS
- CA CHEMICAL ANALYSIS
- CP LABORATORY
- COMPACTION TEST
- CS CONSOLIDATION TEST
- DS DIRECT SHEAR
- HA HYDROMETER ANALYSIS
- MC MOISTURE CONTENT
- MD MOISTURE CONTENT AND DRY DENSITY
- OC ORGANIC COMPOUND
- PM PERMEABILITY OR HYDRAULIC CONDUCTIVITYPP POCKET PENETROMETER
- SA SIEVE ANALYSIS
- TX TRIAXIAL COMPRESSION
- UC UNCONFINED COMPRESSION
- VS VANE SHEAR

SAMPLER SYMBOLS

2.4 INCH I.D. SPLIT BARREL
 DIRECT-PUSH
 STANDARD PENETRATION TEST

SHELBY TUBE

BULK OR GRAB

SHEEN CLASSIFICATIONS

- NS NO VISIBLE SHEEN
- SS SLIGHT SHEEN
- MS MODERATE SHEEN
- HS HEAVY SHEEN
- NT NOT TESTED

MOIST - DAMP, BUT NO VISIBLE WATER

Key to Exploration Logs

ATTACHMENT B LABORATORY ANALYSES RESULTS

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey

Sample Location: TP-3 Sample Name: TP-3 0.5'-3.0' **Depth:** 0.5 - 3 Feet

Moisture Content (%)

19.4%

	Percent		Percent by
Sieve Size	Passing	Size Fraction	Weight
3.0 in. (75.0)	100.0	Coarse Gravel	0.0
1.5 in. (37.5)	100.0	Fine Gravel	0.4
3/4 in. (19.0)	100.0		
3/8 in. (9.5-mm)	100.0	Coarse Sand	1.0
No. 4 (4.75-mm)	99.6	Medium Sand	2.1
No. 10 (2.00-mm)	98.6	Fine Sand	21.9
No. 20 (.850-mm)	97.4		
No. 40 (.425-mm)	96.5	Fines	74.7
No. 60 (.250-mm)	95.5	Total	100.0
No. 100 (.150-mm)	94.1		
No. 200 (.075-mm)	74.7		

LL_		
PL		
PI		
D ₁₀	0.00	
D ₃₀	0.00	
D ₆₀	0.00	
D ₉₀	0.14	
_		
Cc_		
Cu		

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey Sample Location: TP-3 Sample Name: TP-3 3.0'-8.0' Depth: 3 - 8 Feet

Moisture Content (%)

21.6%

	Percent	
Sieve Size	Passing	
3.0 in. (75.0)	100.0	
1.5 in. (37.5)	100.0	
3/4 in. (19.0)	100.0	
3/8 in. (9.5-mm)	100.0	
No. 4 (4.75-mm)	100.0	
No. 10 (2.00-mm)	99.9	
No. 20 (.850-mm)	99.6	
No. 40 (.425-mm)	98.9	
No. 60 (.250-mm)	97.4	
No. 100 (.150-mm)	95.5	
No. 200 (.075-mm)	68.0	

Size Fraction	Percent by Weight
Coarse Gravel	0.0
Fine Gravel	0.0
Medium Sand	1.0
Fines	68.0
Total	1 00.0

LL_	
PL	
PI	
_	
D ₁₀ _	0.00
D ₃₀	0.00
D ₆₀	0.00
D ₉₀	0.14
Cc_	
Cu	

ASTM Classification Group Name: Sandy Silt Symbol: ML

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey

Sample Location: TP-5 Sample Name: TP-5 0.5'-3.0' **Depth:** 0.5 - 3 Feet

Moisture Content (%) 18.8%

	Percent
Sieve Size	Passing
3.0 in. (75.0)	100.0
1.5 in. (37.5)	100.0
3/4 in. (19.0)	100.0
3/8 in. (9.5-mm)	100.0
No. 4 (4.75-mm)	98.3
No. 10 (2.00-mm)	94.8
No. 20 (.850-mm)	92.6
No. 40 (.425-mm)	91.5
No. 60 (.250-mm)	90.6
No. 100 (.150-mm)	89.5
No. 200 (.075-mm)	75.4

Size Fraction	Percent by Weight
Coarse Gravel	0.0
Fine Gravel	1.7
Coarse Sand	3.5
Medium Sand	3.3
Fine Sand	16.1
Fines	75.4
Total	100.0

LL_		
PL		
PI		
D ₁₀	0.00	
D ₃₀	0.00	
D ₆₀	0.00	
D ₉₀	0.16	
Cc_		
Cu		

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey

Sample Location: TP-5 Sample Name: TP-5 3.0'-8.0' Depth: 3 - 8 Feet

Moisture Content (%)

20.2%

Percent		Percent by
Passing	Size Fraction	Weight
100.0	Coarse Gravel	0.0
100.0	Fine Gravel	0.0
100.0		
100.0	Coarse Sand	0.1
100.0	Medium Sand	1.2
99.9	Fine Sand	13.1
99.5		
98.8	Fines	85.7
97.8	Total	100.0
96.6		
85.7		
	Percent Passing 100.0 100.0 100.0 100.0 99.9 99.5 98.8 97.8 96.6 85.7	Percent Size Fraction 100.0 Coarse Gravel 100.0 Fine Gravel 100.0 Fine Gravel 100.0 Coarse Sand 100.0 Coarse Sand 100.0 Medium Sand 99.9 Fine Sand 99.5 98.8 97.8 Total 96.6 85.7

LL_		
PL		
PI		
D ₁₀ _	0.00	
D ₃₀	0.00	
D ₆₀	0.00	
D ₉₀	0.099	
Cc_		
Cu		

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey Sample Location: TP-10 Sample Name: TP-10 4.0'-6.5' Depth: 4 - 6 Feet

Moisture Content (%)

37.4%

	Percent	
Sieve Size	Passing	
3.0 in. (75.0)	100.0	Co
1.5 in. (37.5)	100.0	Fin
3/4 in. (19.0)	100.0	
3/8 in. (9.5-mm)	100.0	Co
No. 4 (4.75-mm)	100.0	Me
No. 10 (2.00-mm)	99.7	Fin
No. 20 (.850-mm)	99.2	
No. 40 (.425-mm)	98.9	Fin
No. 60 (.250-mm)	98.2	То
No. 100 (.150-mm)	95.8	
No. 200 (.075-mm)	74.3	

Size Fraction	Percent by Weight
Coarse Gravel	0.0
Fine Gravel	0.0
Coarse Sand	0.3
Medium Sand	0.8
Fine Sand	24.5
Fines	74.3
Total	100.0

LL	
PL	
PI	
D ₁₀	0.00
D ₃₀	0.00
D ₆₀	0.00
D ₉₀	0.13
Cc	
Cu	

Job Name: 2817 Boulevard Road SE Job Number: 1065-001-01 Date Tested: 7/19/18 Tested By: Kevin Vandehey Sample Location: TP-10 Sample Name: TP-10 6.5'-8.0' Depth: 6.5 - 8 Feet

Moisture Content (%)

30.4%

o: o:	Percent		Percent by
Sieve Size	Passing	Size Fraction	Weight
3.0 in. (75.0)	100.0	Coarse Gravel	0.0
1.5 in. (37.5)	100.0	Fine Gravel	0.0
3/4 in. (19.0)	100.0		
3/8 in. (9.5-mm)	100.0	Coarse Sand	0.0
No. 4 (4.75-mm)	100.0	Medium Sand	0.4
No. 10 (2.00-mm)	100.0	Fine Sand	46.8
No. 20 (.850-mm)	99.9		
No. 40 (.425-mm)	99.6	Fines	52.9
No. 60 (.250-mm)	98.9	Total	100.0
No. 100 (.150-mm)	96.1		
No. 200 (.075-mm)	52.9		

ASTM Classification Group Name: **Sandy Silt** Symbol: **ML**

U.S. Standard Sieve Size #10 #20 #40 #60 #100 #200 3" 1.5" 3/4" 3/8" #4 100 90 80 Percent Passing by Weight 70 60 À 50 40 30 20 10 0 10 0.1 0.01 1000 100 1 0.001 Grain Size in Millimeters → TP-3 0.5'-3.0' --- TP-3 3.0'-8.0' → TP-5 0.5'-3.0' → TP-5 3.0'-8.0' → TP-10 4.0'-6.5' → TP-10 6.5'-8.0' GRAVEL SAND COBBLES SILT OR CLAY COARSE FINE COARSE MEDIUM FINE 2817 BOULEVARD ROAD SE OLYMPIA, WASHINGTON Graph 1 INSIGHT GEOLOGIC, INC. Gradation Analysis Results

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

July 27, 2018

Bill Halbert Insight Geologic, Inc. 1015 East Fourth Ave Olympia, WA 98506

Dear Mr. Halbert:

Please find enclosed the analytical data report for the Kapa Const. Blvd. Rd. Res. Dev. Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain	of	CL	ıst	od	y R	ecc	orc	k						www.Li	bbyEnv	rironmen	tal.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154				Date:	7	2/18	1	18				contra de inguistration	Pag	je:	_/		of	/	
Client: Insight (20000	112					Proje	ct M	lanag	jer:	Bil	11 6	tall	112			an a		-		un en agrice d'anne arrived de la	
Address: 1015 Rast	4th	Ave					Proje	ct N	ame	Ke	apa	C	-on st	F. 13	RIVO	<i>l</i>	Rol	R	25.	Devi	,	
City: Olympia		State: h	IA Zip	: 98506			Locat	tion:	C	2/15	mx	2,01				City	, Sta	te: 1	NA			
Phone: 360-754-21	28	Fax:	-				Colle	ctor:	. k	lev	in	C	and	oher	8	Dat	e of (Collec	tion:	7/1	8/18	-
Client Project # 1065	-001-	-01					Emai	il:	Bi	11 K	Q	T	nsig	inte	be	0100	gic	. C	on	.,	1	
Sample Number	Depth	Time	Sample Type	Container Type	JC	5 826 5 826	AR ST	+ + 00 14	ATP XX	SID SI AN	5 R. 2	10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 50 10 50	40-82 40-82 88 40-88 88 40-88 88 88 88 88 88 88 88 88 88 88 88 88	St IS	Ne das	Metals		Fi	eld No	tes	
1 5-1	6"	13:00	5011	402 2V04				X						X	-							
2 5-2	6"	13:10	1	1				Х						X								
3 5-3	6"	13:25						X						Х								
4 5-4	6"	13:35						X						X						ga congour crass birms of congour crass		
5 5-5	6"	13:50						X						X	1							
65-6	6"	14:00	V	4				X						X	6							
7																						
8																				anayes an internet in a state in the	a na population na para tanàna da	
9																					1993 Mar 201 (201 (201 (201 (201 (201 (201 (201	
10																					ugaarinaa oo ahaa garah ahaanki sheena	
11																					**************************************	
12																				conversion of the conversion of the	A Q C L L L L L L L L L L L L L L L L L L	
13							1. A.													0011 \$500 ALI BELLE ISOMA & WO		
14																						
15																						
16			-197 ₁																			
17									-													
Relinquished by:	Date	/ Time	:40	Received by:	1	it		7	hal	Date		0	S	ample	e Re	ceip	t	Ren	narks:	Fhi	tean	HAIN
Relinquished by:	Date	/ Time	* / ×	Received by:	- l	0		(101	Date	/ Time	<u> </u>	Temp	onution	12	2	°C	1		(ru	IS UNI	ILIU
													Seals In	ntact?	R) N	N/A	1				
Relinquished by:	Date	/ Time		Received by:						Date	/ Time		Total N Cont	umber o ainers	f	18		TA	T: 24	HR 4	8HR	5-DAY

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Olympia, Washingon Libby Project # L180719-3 Client Project # 1065-001-01

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	7/20/18	100	nd	nd	nd
S1	7/20/18	106	nd	nd	nd
S2	7/20/18	106	nd	nd	nd
S3	7/20/18	109	nd	nd	nd
S4	7/20/18	117	nd	nd	nd
S5	7/20/18	114	nd	nd	nd
S6	7/20/18	110	nd	nd	nd
S6 Dup	7/20/18	117	nd	nd	nd
Practical Quantitation Lim	nit		20	50	250

Hydrocarbon Identification by NWTPH-HCID for Soil

'nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Olympia, Washingon Libby Project # L180719-3 Client Project # 1065-001-01 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic			
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Method Blank	7/21/18	nd	nd	nd	nd			
S1	7/21/18	40	nd	11	nd			
S2	7/21/18	73	nd	25	nd			
S3	7/21/18	42	nd	15	nd			
S4	7/21/18	64	nd	8.6	nd			
S5	7/21/18	57	nd	19	nd			
S6	7/21/18	16	nd	26	nd			
Practical Quantitation I	Limit	5.0	1.0	5.0	5.0			
"nd" Indicates not detected at the listed detection limits.								

Analyses of Total Metals in Soil by EPA Method 7010 Series

ANALYSES PERFORMED BY: Dirk Peterson

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Olympia, Washingon Libby Project # L180719-3 Client Project # 1065-001-01 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Total Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	7/21/18	95%	90%	90%	108%
L180718-3 MS	7/21/18	93%	90%	86%	
L180718-3 MSD	7/21/18	97%	92%	89%	93%
RPD	7/21/18	4%	2%	3%	100%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Olympia, Washingon Libby Project # L180719-3 Client Project # 1065-001-01 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	7/22/18	nd
S1	7/22/18	nd
S2	7/22/18	nd
S3	7/22/18	nd
S4	7/22/18	nd
S5	7/22/18	nd
S6	7/22/18	nd
Practical Quantitation Limit		0.5
"nd" Indicates not detected at the lip	sted detection limits	

Analyses of Total Mercury in Soil by EPA Method 7471

ANALYSES PERFORMED BY: Sherry Chilcutt

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Olympia, Washingon Libby Project # L180719-3 Client Project # 1065-001-01 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Total Mercury by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	7/22/18	96%
L180718-3 MS	7/22/18	109%
L180718-3 MSD	7/22/18	102%
RPD	7/22/18	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

KAPA CONST. BLVD. RD. RES. DEV. PROJECT Insight Geologic, Inc. Libby Project # L180719-3 Date Received 7/19/2018 Time Received 3:40 PM

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Received By MH

Sample Receipt Checklist

Chain of Custody								
1. Is the Chain of Custody is complete?	\checkmark	Yes			No			
2. How was the sample delivered?	\checkmark	Hand De	elivered		Picked U	0		Shipped
Log In								
3. Cooler or Shipping Container is present.		Yes		\checkmark	No			N/A
4. Cooler or Shipping Container is in good condition.		Yes			No		\checkmark	N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes			No		\checkmark	N/A
6. Was an attempt made to cool the samples?		Yes		\checkmark	No			N/A
7. Temperature of cooler (0°C to 8°C recommended)			N/A	°C				
8. Temperature of sample(s) (0°C to 8°C recommended)			23.2	°C				
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes			No			
10. Is it clear what analyses were requested?	1	Yes			No			
11. Did container labels match Chain of Custody?	\checkmark	Yes			No			
12. Are matrices correctly identified on Chain of Custody?	1	Yes			No			
13. Are correct containers used for the analysis indicated?		Yes			No			
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes			No			
15. Were all containers properly preserved per each analysis?	1	Yes			No			
16. Were VOA vials collected correctly (no headspace)?	\checkmark	Yes			No			N/A
17. Were all holding times able to be met?	\checkmark	Yes			No			
Discrepancies/ Notes								
18. Was client notified of all discrepancies?		Yes			No		\checkmark	N/A
Person Notified:				ŗ		Date:		
By Whom:				ŗ		Via:		
Regarding:				ŗ				
19. Comments.								

ATTACHMENT C SEISMIC DESIGN PARAMETERS

EUSGS Design Maps Summary Report

User-Specified Input

Report Title	Boulevard Road Residential Development Thu July 26, 2018 18:21:38 UTC
Building Code Reference Document	2012/2015 International Building Code (which utilizes USGS hazard data available in 2008)
Site Coordinates	47.0232°N, 122.8666°W
Site Soil Classification	Site Class D – "Stiff Soil"
Risk Category	I/II/III

USGS-Provided Output

$S_s =$	1.316 g	S _{мs} =	1.316 g	S _{DS} =	0.878 g
S ₁ =	0.539 g	S _{м1} =	0.808 g	S _{D1} =	0.539 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

EVALUATE: Design Maps Detailed Report

2012/2015 International Building Code (47.0232°N, 122.8666°W)

Site Class D – "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From <u>Figure 1613.3.1(1)</u> ^[1]	S _s = 1.316 g
---	--------------------------

From <u>Figure 1613.3.1(2)</u> ^[2]	$S_1 = 0.539 \text{ g}$
---	-------------------------

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard – Table 20.3-1 SITE CLASS DEFINITIONS

Site Class	,	\overline{N} or \overline{N}_{ch}	_ <i>s</i> _	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	
	Any profile with more than 10 ft of soil having the characteristics: • Plasticity index <i>PI</i> > 20,			
	• Molsture content $w \ge 40\%$, and			

• Undrained shear strength $\bar{s}_{\rm u}$ < 500 psf

See Section 20.3.1

F. Soils requiring site response

analysis in accordance with Section

21.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT F _a

Site Class	Mapped Spectral Response Acceleration at Short Period				
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				

Note: Use straight–line interpolation for intermediate values of S_s

For Site Class = D and S_{s} = 1.316 g, F_{a} = 1.000

TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT F_v

Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	S ₁ ≤ 0.10	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S ₁ ≥ 0.50
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F	See Section 11.4.7 of ASCE 7				

Note: Use straight–line interpolation for intermediate values of S_1

For Site Class = D and $S_1 = 0.539$ g, $F_v = 1.500$

Equation (16-37):	$S_{MS} = F_a S_S = 1.000 \times 1.316 = 1.316 g$
Equation (16-38):	$S_{M1} = F_v S_1 = 1.500 \times 0.539 = 0.808 g$
Section 1613.3.4 — Design spectral re	esponse acceleration parameters
Equation (16-39):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.316 = 0.878 \text{ g}$
Equation (16-40):	S _{D1} = ⅔ S _{M1} = ⅔ x 0.808 = 0.539 g

Section 1613.3.5 — Determination of seismic design category

EISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION				
	RISK CATEGORY			
VALUE OF S _{DS}	I or II	III	IV	
S _{DS} < 0.167g	А	A	А	
0.167g ≤ S _{DS} < 0.33g	В	В	С	
0.33g ≤ S _{ps} < 0.50g	С	С	D	
0.50g ≤ S _{DS}	D	D	D	

TABLE 1613.3.5(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

For Risk Category = I and S_{DS} = 0.878 g, Seismic Design Category = D

TABLE 1613.3.5(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S_{D1}	RISK CATEGORY			
	I or II	III	IV	
S _{D1} < 0.067g	А	A	A	
$0.067g \le S_{D1} < 0.133g$	В	В	С	
$0.133g \le S_{D1} < 0.20g$	С	С	D	
0.20g ≤ S _{D1}	D	D	D	

For Risk Category = I and S_{D1} = 0.539 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = D

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 1613.3.1(1): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf

2. *Figure 1613.3.1(2)*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

ATTACHMENT D REPORT LIMITATIONS AND GUIDELINES FOR USE

ATTACHMENT D

REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This attachment provides information to help you manage your risks with respect to the use of this report.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES, PERSONS AND PROJECTS

This report has been prepared for the exclusive use of Kapa Construction (Client) and their authorized agents. This report may be made available to regulatory agencies for review. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

Insight Geologic Inc. structures our services to meet the specific needs of our clients. For example, a geotechnical or geologic study conducted for a civil engineer or architect may not fulfill the needs of a construction contractor or even another civil engineer or architect that are involved in the same project. Because each geotechnical or geologic study is unique, each geotechnical engineering or geologic report is unique, prepared solely for the specific client and project site. Our report is prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against openended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted geotechnical practices in this area at the time this report was prepared. This report should not be applied for any purpose or project except the one originally contemplated.

A GEOTECHNICAL ENGINEERING OR GEOLOGIC REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

Insight Geologic, Inc. considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless Insight Geologic specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

For example, changes that can affect the applicability of this report include those that affect:

- the function of the proposed structure;
- elevation, configuration, location, orientation or weight of the proposed structure;
- composition of the design team; or
- project ownership.

If important changes are made after the date of this report, Insight Geologic should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org .

SUBSURFACE CONDITIONS CAN CHANGE

This geotechnical or geologic report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, or by natural events such as floods, earthquakes, slope instability or ground water fluctuations. Always contact Insight Geologic before applying a report to determine if it remains applicable.

MOST GEOTECHNICAL AND GEOLOGIC FINDINGS ARE PROFESSIONAL OPINIONS

Our interpretations of subsurface conditions are based on field observations from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Insight Geologic reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

GEOTECHNICAL ENGINEERING REPORT RECOMMENDATIONS ARE NOT FINAL

Do not over-rely on the preliminary construction recommendations included in this report. These recommendations are not final, because they were developed principally from Insight Geologic's professional judgment and opinion. Insight Geologic's recommendations can be finalized only by observing actual subsurface conditions revealed during construction. Insight Geologic cannot assume responsibility or liability for this report's recommendations if we do not perform construction observation.

Sufficient monitoring, testing and consultation by Insight Geologic should be provided during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether or not earthwork activities are completed in accordance with our recommendations. Retaining Insight Geologic for construction observation for this project is the most effective method of managing the risks associated with unanticipated conditions.

A GEOTECHNICAL ENGINEERING OR GEOLOGIC REPORT COULD BE SUBJECT TO MISINTERPRETATION

Misinterpretation of this report by other design team members can result in costly problems. You could lower that risk by having Insight Geologic confer with appropriate members of the design team after submitting the report. Also retain Insight Geologic to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering or geologic report. Reduce that risk by having Insight Geologic participate in pre-bid and pre-construction conferences, and by providing construction observation.

DO NOT REDRAW THE EXPLORATION LOGS

Geotechnical engineers and geologists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a

geotechnical engineering or geologic report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

GIVE CONTRACTORS A COMPLETE REPORT AND GUIDANCE

Some owners and design professionals believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering or geologic report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with Insight Geologic and/or to conduct additional study to obtain the specific types of information they need or prefer. A pre-bid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might an owner be in a position to give contractors the best information available, while requiring them to at least share the financial responsibilities stemming from unanticipated conditions. Further, a contingency for unanticipated conditions should be included in your project budget and schedule.

CONTRACTORS ARE RESPONSIBLE FOR SITE SAFETY ON THEIR OWN CONSTRUCTION PROJECTS

Our geotechnical recommendations are not intended to direct the contractor's procedures, methods, schedule or management of the work site. The contractor is solely responsible for job site safety and for managing construction operations to minimize risks to on-site personnel and to adjacent properties.

READ THESE PROVISIONS CLOSELY

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering or geology) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. Insight Geologic includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with Insight Geologic if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

GEOTECHNICAL, GEOLOGIC AND ENVIRONMENTAL REPORTS SHOULD NOT BE INTERCHANGED

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.